Microbial Ecology

, Volume 66, Issue 4, pp 773–783

Seasonal Dynamics and Community Structure of Bacterioplankton in Upper Paraná River Floodplain

  • Josiane Barros Chiaramonte
  • Maria do Carmo Roberto
  • Thomaz Aurélio Pagioro
Microbiology of Aquatic Systems


Knowing the bacterial community, as well as understanding how it changes during a hydrological pulse, is very important to understand nutrient cycles in floodplain systems. The bacterial community structure was analyzed in the 12 sites of upper Paraná River floodplain, and its changes during a flood pulse were described. In order to understand how high and low water phases change bacterial community by changing abiotical variables, the bacterial community distribution was determined in superficial water of 12 different sampling stations, every 3 months, from December 2010 to September 2011. The bacterial community structure and diversity was analyzed by fluorescent in situ hybridization, considering the main domains Bacteria and Archaea and the subdivisions of the phylum Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) and the Cytophaga–Flavobacterium cluster. Smaller densities were observed on ebb and low water periods and the highest density was observed in March 2011. The high water period caused a decrease in diversity because of the lost of equitability. The highest values of Shannon–Wiener index were found on December 2010 and September 2011. The nutrients runoff to the aquatic environments of the floodplain promoted an increase in the total bacterial density during the high water phase as well as changes in bacterial community composition. The bacterial community presented both spatial and temporal differences. Yet, temporal changes in limnological characteristics of the floodplain were the most important predictor of bacterial community and also influenced its diversity.


  1. 1.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microb 56:1919–1925Google Scholar
  2. 2.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169PubMedCentralPubMedGoogle Scholar
  3. 3.
    Amann RI, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotech 12:231–236CrossRefPubMedGoogle Scholar
  4. 4.
    Anésio AM, Abreu PC, Esteves FA (1996) Influence of the hydrological cycle on the bacterioplankton of an impacted clear water Amazonian lake. Microbial Ecol 34:66–73CrossRefGoogle Scholar
  5. 5.
    Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol-Prog Ser 10:257–263CrossRefGoogle Scholar
  6. 6.
    Azevedo JC, Teixeira MC, Santos AM, Leandrini JA, Pagioro TA (2008) Caracterização espectroscópica da matéria orgânica dissolvida da planície de inundação do alto rio Paraná. Oecol Bras 12(1):66–77Google Scholar
  7. 7.
    Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river-floodplain system (Danube, Austria). Appl Environ Microb 71(2):609–620CrossRefGoogle Scholar
  8. 8.
    Bonneto AA, Wais IR, Castello HP (1989) The increasing damming of the Paraná basin and its effects on the lower reaches. Regul River 4:333–346CrossRefGoogle Scholar
  9. 9.
    Borges PAF, Train S (2009) Phytoplankton diversity in the Upper Paraná River floodplain during two years of drought (2000 and 2001). Braz J Biol 69(2):637–647CrossRefPubMedGoogle Scholar
  10. 10.
    Bouvier T, Del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr 47:453–470CrossRefGoogle Scholar
  11. 11.
    Carmouze JP (1995) O Metabolismo dos ecossistemas aquáticos. Fundamentos teóricos, métodos de estudo e análises químicas. Edgard Blücher/FAPESP, São PauloGoogle Scholar
  12. 12.
    Carvalho P, Thomaz SM, Bini LM (2003) Effects of water level, abiotic and biotic factors on bacterioplankton abundance in lagoons of a tropical floodplain (Paraná River, Brazil). Hydrobiol 510:67–74CrossRefGoogle Scholar
  13. 13.
    Communelo E (2001). Dinâmica de inundação de áreas sazonalmente alagáveis na planície aluvial do alto rio Paraná. Maringá. Dissertação, Universidade Estadual de MaringáGoogle Scholar
  14. 14.
    Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosyst 5:105–121CrossRefGoogle Scholar
  15. 15.
    Cottrell M, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microb 66(12):5116–5122CrossRefGoogle Scholar
  16. 16.
    Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source. Appl Environ Mircrob 69(4):2253–2268CrossRefGoogle Scholar
  17. 17.
    Cuffney TF, Wallace JB (1988) Particulate organic matter export from three headwater streams: discrete versus continuous measurements. Can J Fish Aquat Sci 45:2010–2016CrossRefGoogle Scholar
  18. 18.
    Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444CrossRefPubMedGoogle Scholar
  19. 19.
    Findlay S, Carlough M, Crocker MT, Gill HK, Meyer JL, Smith PJ (1986) Bacterial growth on macrophyte leachate and fate of bacterial production. Limnol Oceanogr 31(6):1335–1342CrossRefGoogle Scholar
  20. 20.
    Fundação Universidade Estadual De Maringá (2000) Nupélia/Cnpq Relatório Anual/PELD. A planície alagável do alto rio Paraná Sitio 6—descrição dos locais de amostragem. http://www.peld.uem.br/Relat2000/index.htm. Accessed 26 March 2013
  21. 21.
    Gauch HG Jr (1986) Multivariate analysis in community ecology. Cambridge University Press, Cambridge, 298 pGoogle Scholar
  22. 22.
    Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of fresh waters, 2nd edn. Blackwell Scientific Publication, LondonGoogle Scholar
  23. 23.
    Imhoff JF (2006) The phototrophic alpha-Proteobacteria. In: Dworkin M, Falkow S, Rosenberg B, Schleifer KH, Stackebrandt E (eds) The prokaryotes. 3rd edn. Springer, New York, pp 41–64CrossRefGoogle Scholar
  24. 24.
    Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1996) Data analysis in community and landscape ecology. University Press, CambridgeGoogle Scholar
  25. 25.
    Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Can Spec Publi Fish Aquat Sci 106:110–127Google Scholar
  26. 26.
    Kent AD, Jones SE (2006) Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure. Environ Microbiol 8(8):1448–1459CrossRefPubMedGoogle Scholar
  27. 27.
    Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  28. 28.
    Kobayashi T, Ryder DS, Gordon G, Shannon I, Ingleton T, Carpenter M, Jacobs SJ (2009) Short-term response of nutrients, carbon and planktonic microbial communities to floodplain wetland inundation. Aquat Ecol 43:843–858CrossRefGoogle Scholar
  29. 29.
    Lansac-Tôha FA, Bonecker CC, Velho LFM, Simões NR, Dias JD, Alves GM, Takahashi EM (2009) Biodiversity of zooplankton communities in the upper Paraná River floodplain: interannual variation from long-term studies. Braz J Biol 69(suppl 2):539–549CrossRefPubMedGoogle Scholar
  30. 30.
    Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nat 442(17):806–809CrossRefGoogle Scholar
  31. 31.
    Mackereth FYH, Heron J, Talling JJ (1978) Water analysis: some revised methods for limnologists. Freshw Biol Assoc 36:1–120Google Scholar
  32. 32.
    Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, LondonCrossRefGoogle Scholar
  33. 33.
    Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600CrossRefGoogle Scholar
  34. 34.
    Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter bacteroides in the natural environment. Microbiol 142:1097–1106CrossRefGoogle Scholar
  35. 35.
    Mccune B, Mefford MJ, PC-ORD (1999) Multivariate analysis of ecological data. Version 5.0, MjM Software. Gleneden Beach, OR, USAGoogle Scholar
  36. 36.
    Methé BA, Hiorns WD, Zehr JP (1998) Contrast between marine and freshwater bacterial community composition: analyses of communities in Lake George and six other Adirondack lakes. Limnol Oceanogr 43(2):368–374CrossRefGoogle Scholar
  37. 37.
    Neef A (1997) Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. Doctoral Thesis, Technische Universität München.Google Scholar
  38. 38.
    Nelson CE (2009) Phenology of high-elevation pelagic Bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. ISME J 3:13–30CrossRefPubMedGoogle Scholar
  39. 39.
    Newton RJ, Kent AD, Triplett EW, McMahon KD (2006) Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ Microbiol 8(6):956–970CrossRefPubMedGoogle Scholar
  40. 40.
    Pomeroy LR (2007) The microbial loop. Oceanogr 20:2CrossRefGoogle Scholar
  41. 41.
    Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240PubMedCentralPubMedGoogle Scholar
  42. 42.
    Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz J Biol 69(2):717–725CrossRefPubMedGoogle Scholar
  43. 43.
    Rocha PC (2002). Dinâmica dos Canais no Sistema Rio–Planície Fluvial do Alto Rio Paraná, nas Proximidades de Porto Rico-PR. Tese de Doutorado, Universidade Estadual de Maringá.Google Scholar
  44. 44.
    Schwarz JIK, Eckert W, Conrad R (2007) Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30:239–254CrossRefPubMedGoogle Scholar
  45. 45.
    Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD (2007) Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr 52(2):487–494CrossRefGoogle Scholar
  46. 46.
    Souza MC, Monteiro R (2005) Levantamento florístico em remanescente de floresta ripária no alto rio Paraná: mata do Araldo, Porto Rico, Paraná. Brasil Acta Sci Biol Sci 27(4):405–414Google Scholar
  47. 47.
    Statsoft Inc (2005) Statistica (data analysis software system). Version 7.1.Google Scholar
  48. 48.
    Teixeira MC, Santana NF, Azevedo JCR, Pagioro TA (2011) Bacterioplankton features and its relations with DOC characteristics and other limnological variables in Paraná River floodplain environments (PR/MS-Brazil). Braz J Microbiol 42:897–908PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiol 579:1–13CrossRefGoogle Scholar
  50. 50.
    Thomaz SM, Agostinho AA, Hahn NS (2004) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys, NetherlandsGoogle Scholar
  51. 51.
    Train S, Rodrigues LC (2004) Phytoplankton assemblages. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys, Leiden, pp 103–124Google Scholar
  52. 52.
    Van der Guch K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna JM, Schwenk K, Zwart G, Degans H, Vyerman W, Meester LD (2007) The power of species sorting local factors drive bacterial community composition over a wide range of special scales. PNAS 104(51):20404–20409CrossRefGoogle Scholar
  53. 53.
    Velho LFM, Bini LM, Lansac-Tôha FA (2004) Testate amoeba (Rhizopoda) diversity in plankton of the Upper Paraná River floodplain, Brazil. Hydrobiol 523(1–3):103–111CrossRefGoogle Scholar
  54. 54.
    Welcomme RL (1985) River fisheries. FAO Tech Pap, pp 262–330Google Scholar
  55. 55.
    Zagatto EAG, Jacintho AO, Reis BF, Krug FJ, Bergamim H, Pessenda LCR, Mortatti J, Giné MF (1981) Manual de análises de plantas empregando sistemas de injeção em fluxo. Universidade de São Paulo, Piracicaba–SPGoogle Scholar
  56. 56.
    Zwart G, Hiorns WD, Methé BA, van Agterveld MP, Huisman R, Nold SC, Zehr JP, Laanbroek HJ (1998) Nearly identical 16S rRNA sequences recovered from lakes in north America and Europe indicate the existence of clades of globally distributed freshwater Bacteria. Syst Appl Microbiol 21:546–556CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Josiane Barros Chiaramonte
    • 1
  • Maria do Carmo Roberto
    • 2
  • Thomaz Aurélio Pagioro
    • 3
  1. 1.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos ContinentaisUniversidade Estadual de MaringáMaringáBrazil
  2. 2.DBI/NUPELIA/PEAUniversidade Estadual de MaringáMaringáBrazil
  3. 3.Departamento Acadêmico de Química e BiologiaUniversidade Tecnológica Federal do ParanáCuritibaBrazil

Personalised recommendations