Advertisement

Microbial Ecology

, Volume 66, Issue 4, pp 840–849 | Cite as

Probiotic Dosing of Ruminococcus flavefaciens Affects Rumen Microbiome Structure and Function in Reindeer

  • Kirsti E. Præsteng
  • Phillip B. Pope
  • Isaac K. O. Cann
  • Roderick I. Mackie
  • Svein D. Mathiesen
  • Lars P. Folkow
  • Vincent G. H. Eijsink
  • Monica A. Sundset
Environmental Microbiology

Abstract

Highly cellulolytic bacterial species such as Ruminococcus flavefaciens are regarded essential for the microbial breakdown of cellulose in the rumen. We have investigated the effect of ruminal dosing of R. flavefaciens strain 8/94-32 during realimentation of starved reindeer (males, n = 3). Microbiome function measured as in situ digestion of cellulose and food pellets (percent DMD; dry matter disappearance) decreased after probiotic dosing. Microbial community analyses (>100,000 16S rDNA gene sequences for 27 samples) demonstrated that ruminal dosing influenced the microbiome structure; reflected by increased phylogenetic distances from background samples (unweighted UniFrac analysis) and reduced species diversity and evenness. Despite the inability to detect strain 8/94-32 post-dosing, the relative abundance of its affiliate family Ruminococcaceae remained consistent throughout the trial, whilst a dominant peak in the genus Prevotella and decline in uncharacterized Bacteroidetes (uBacNR) were observed in treatment samples. No clear relationships were observed between the relative abundance of Ruminococcaceae, Prevotella and uBacNR with cellulose DMD; however, Prevotella (negative) and uBacNR (positive) exhibited relationships with pellet DMD. These unexpected effects of ruminal dosing of a cellulolytic bacterium on digestibility are relevant for other studies on rumen manipulation.

Keywords

Bacteroidetes Rumen Content Fibre Digestion Biogas Reactor Rumen Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Prof. Arnoldus Schytte Blix for help with the rumen fistulation of the animals, Hans Edvin Lian for all help with animals, Alexandra Heuer for help with sampling during animal experiments, and Prof. Michael Greenacre for help with DMD statistics. This study is linked to the framework of the International Polar Year (IPY) as part of the consortium IPY # 399 EALAT: Climate change and reindeer husbandry. Funding was provided by the Reindeer Husbandry Research Fund, University of Tromsø, Roald Amundsen Centre for Arctic Research (University of Tromsø) and Centre for Sami Studies (University of Tromsø). PBP is supported by The Research Council of Norway’s FRIPRO program (214042) and the European Commission Marie Curie International Incoming Fellowship (PIIF-GA-2010-274303).

Supplementary material

248_2013_279_MOESM1_ESM.pdf (104 kb)
Table S1 454-pyrosequencing statistics (PDF 103 kb)
248_2013_279_MOESM2_ESM.pdf (45 kb)
Table S2 (PDF 45 kb)

References

  1. 1.
    Abe F, Ishibashi N, Shimamura S (1995) Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci 78:2838–2846CrossRefPubMedGoogle Scholar
  2. 2.
    Avgustin G, Wallace RJ, Flint HJ (1997) Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47:284–288CrossRefPubMedGoogle Scholar
  3. 3.
    Belenguer A, Toral PG, Frutos P, Hervás G (2010) Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep. J Dairy Sci 93:3275–3286CrossRefPubMedGoogle Scholar
  4. 4.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N (2010) QIIME allows integration and analysis of high-throughput community sequencing data. Nat Meth 7:335–336CrossRefGoogle Scholar
  6. 6.
    Carberry CA, Kenny DA, Han S, McCabe MS, Waters SM (2012) Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl Environ Microbiol 78:4949–4958PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Chiquette J, Talbot G, Markwell F, Nili N, Forster RJ (2007) Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate-fed dairy cows: effect of ruminal fermentation, cellulolytic populations and in sacco digestibility. Can J Anim Sci 87:237–249CrossRefGoogle Scholar
  8. 8.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Eira IM, Jaedicke C, Magga OH, Maynard NG, Vikhamar-Schuler D, Mathiesen SD (2013) Traditional Sámi snow terminology and physical snow classification—two ways of knowing. Cold Reg Sci Technol 85:117–130CrossRefGoogle Scholar
  12. 12.
    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  13. 13.
    Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Meth 5:235–237CrossRefGoogle Scholar
  14. 14.
    Josefsen TD, Sørensen KK, Mørk T, Mathiesen SD, Ryeng KA (2007) Fatal inanition in reindeer (Rangifer tarandus tarandus): pathological findings in completely emaciated carcasses. Acta Vet Scand 49:27PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kang S, Denman SE, Morrison M, Yu Z, McSweeney CS (2009) An efficient RNA extraction method for estimating gut microbial diversity by polymerase chain reaction. Curr Microbiol 58:464–471CrossRefPubMedGoogle Scholar
  16. 16.
    Kmet V, Flint HJ, Wallace RJ (1993) Probiotics and manipulation of rumen development and function. Arch Tierernahr 44:1–10CrossRefPubMedGoogle Scholar
  17. 17.
    Krause DO, Bunch RJ, Colan LL, Kennedy PM, Smith WJ, Mackie RI, McSweeney CS (2001) Repeated ruminal dosing of Ruminococcus spp. does not result in persistence, but changes in other microbial populations occur that can be measured with quantitative 16S-rRNA-based probes. Microbiology 147:1719–1729CrossRefPubMedGoogle Scholar
  18. 18.
    Li RW, Connor EE, Li C, Baldwin VRL, Sparks ME (2012) Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol 14:129–139CrossRefPubMedGoogle Scholar
  19. 19.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Mackenzie AK, Pope PB, Pedersen HL, Gupta R, Morrison M, Willats WG, Eijsink VGH (2012) Two SusD-like proteins encoded within a polysaccharide utilization locus of an uncultured ruminant Bacteroidetes phylotype bind strongly to cellulose. Appl Environ Microbiol 78:5935–5937PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Mathiesen SD, Haga ØE, Kaino T, Tyler NJC (2000) Diet composition, rumen papillation and maintenance of carcas mass in female Norwegian reindeer (Rangifer tarandus tarandus) in winter. J Zool 251:129–138CrossRefGoogle Scholar
  22. 22.
    Nilsson A, Åhman B, Murphy M, Soveri T (2006) Rumen function in reindeer (Rangifer tanandus tarandus) after sub-maintenance feed intake and subsequent feeding. Rangifer 26:73–83CrossRefGoogle Scholar
  23. 23.
    Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:e38571PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Rosewarne CP, Pope PB, Denman SE, McSweeney CS, O’Cuiv P, Morrison M (2010) High-yield and phylogenetically robust methods of DNA recovery for analysis of microbial biofilms adherent to plant biomass in the herbivore gut. Microb Ecol 61:448–454CrossRefPubMedGoogle Scholar
  26. 26.
    Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microbiol 39:604–610PubMedCentralPubMedGoogle Scholar
  27. 27.
    Russell JB, Wilson DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79:1503–1509CrossRefPubMedGoogle Scholar
  28. 28.
    Sletten H, Hove K (1990) Digestive studies with a feed developed for realimentation of starving reindeer. Rangifer 10:31–37CrossRefGoogle Scholar
  29. 29.
    Sundset MA, Kohn A, Mathiesen SD, Præsteng KE (2008) Eubacterium rangiferina, a novel usnic acid resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749CrossRefPubMedGoogle Scholar
  30. 30.
    Sundset MA, Præsteng KE, Cann IK, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 54:424–438CrossRefPubMedGoogle Scholar
  31. 31.
    Tyler NJC, Turi JM, Sundset MA, Bull KS, Sara MN, Reinert E, Oskal N, Nellemann C, McCarthy JJ, Mathiesen SD, Martello ML, Magga OH, Hovelsrud GK, Hanssen-Bauer I, Eira NI, Eira IMG, Corell RW (2007) Saami reindeer pastoralism under climate change: applying a generalized framework for vulnerability studies to a sub-arctic social-ecological system. Global Env Change 17:191–206CrossRefGoogle Scholar
  32. 32.
    Wallace RJ (2008) Gut microbiology—broad genetic diversity, yet specific metabolic niches. Animal 2:661–668Google Scholar
  33. 33.
    Welkie DG, Stevenson DM, Weimer PJ (2010) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16:94–100CrossRefPubMedGoogle Scholar
  34. 34.
    Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci U S A 108:4158–4163PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Whitehouse NL, Olson VM, Schwab CG, Chesbro WR, Cunningham KD, Lykos T (1994) Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids. J Anim Sci 72:1335–1343PubMedGoogle Scholar
  36. 36.
    Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626CrossRefPubMedGoogle Scholar
  37. 37.
    Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808–812PubMedGoogle Scholar
  38. 38.
    Ørskov ER, Hovell FDD, Mould F (1980) The use of the nylon bag technique for the evaluation of feedstuffs. Trop Animal Prod 5:195–213Google Scholar
  39. 39.
    Aagnes TH, Sørmo W, Mathiesen SD (1995) Ruminal microbial digestion in free-living, in captive lichen-fed, and in starved reindeer (Rangifer tarandus tarandus) in winter. Appl Environ Microbiol 61:583–591PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kirsti E. Præsteng
    • 1
  • Phillip B. Pope
    • 2
  • Isaac K. O. Cann
    • 3
    • 4
    • 5
  • Roderick I. Mackie
    • 3
    • 4
    • 6
  • Svein D. Mathiesen
    • 7
  • Lars P. Folkow
    • 1
  • Vincent G. H. Eijsink
    • 2
  • Monica A. Sundset
    • 1
  1. 1.Department of Arctic and Marine BiologyUniversity of TromsøTromsøNorway
  2. 2.Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
  3. 3.Department of Animal SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Institute of Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Department of MicrobiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.Division of Nutritional SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.UArctic EALAT Institute at International Centre for Reindeer Husbandry and The Norwegian School of Veterinary ScienceTromsøNorway

Personalised recommendations