Microbial Ecology

, Volume 66, Issue 4, pp 831–839 | Cite as

Uneven Distribution of Halobacillus trueperi Species in Arid Natural Saline Systems of Southern Tunisian Sahara

  • Amel Guesmi
  • Besma Ettoumi
  • Darine El Hidri
  • Jihene Essanaa
  • Hanene Cherif
  • Francesca Mapelli
  • Ramona Marasco
  • Eleonora Rolli
  • Abdellatif Boudabous
  • Ameur Cherif
Environmental Microbiology

Abstract

The genetic diversity of a collection of 336 spore-forming isolates recovered from five salt-saturated brines and soils (Chott and Sebkhas) mainly located in the hyper-arid regions of the southern Tunisian Sahara has been assessed. Requirements and abilities for growth at a wide range of salinities\ showed that 44.3 % of the isolates were extremely halotolerant, 23 % were moderate halotolerant, and 32.7 % were strict halophiles, indicating that they are adapted to thrive in these saline ecosystems. A wide genetic diversity was documented based on 16S–23S rRNA internal transcribed spacer fingerprinting profiles (ITS) and 16S rRNA gene sequences that clustered the strains into seven genera: Bacillus, Gracilibacillus, Halobacillus, Oceanobacillus, Paenibacillus, Pontibacillus, and Virgibacillus. Halobacillus trueperi was the most encountered species in all the sites and presented a large intraspecific diversity with a multiplicity of ITS types. The most frequent ITS type included 42 isolates that were chosen for assessing of the intraspecific diversity by BOX-PCR fingerprinting. A high intraspecific microdiversity was documented by 14 BOX-PCR genotypes whose distribution correlated with the strain geographic origin. Interestingly, H. trueperi isolates presented an uneven geographic distribution among sites with the highest frequency of isolation from the coastal sites, suggesting a marine rather than terrestrial origin of the strains. The high frequency and diversity of H. trueperi suggest that it is a major ecosystem-adapted microbial component of the Tunisian Sahara harsh saline systems of marine origin.

Supplementary material

248_2013_274_MOESM1_ESM.doc (160 kb)
Supplementary material Fig. S1. 16S-23S rDNA ITS haplotypes of spore forming bacteria as resolved on 2 % agarose gels. Lane M contained a 50 bp ladder where the positions of the 100, 400 and 800 bp are indicated on the left. Lane M1 contained 100 bp ladder. ITS haplotype numbers are indicated above the patterns. (A) ITS 1–37, isolates BMG J69, J62, A144, AE14, AJ24, J49, E5, AJ37, A137, S18.1, 1.5, AE8, J51, D3, A74, 7.26, J81, J78, J82, AJ19, AG21, J38, J18, A126, 10.4, J54, A83, G1, A25, G11, AG26, AJ7, J36, J55, AE3, J77, AJ41. (B) ITS 38–65, isolates BMG E22, A36, A18, E56, E41, E58, E50, E21, E64, E25, E69, A40, A64, AJ26, A92, A57, A86, A22, A108, A63, AG3, AG23, AJ49, AG24, AJ32, AG1, A42, D10. (DOC 159 kb)
248_2013_274_MOESM2_ESM.doc (163 kb)
Supplementary material Fig. S2. BOX-PCR profiles resolved on 2 % agarose gels. BOX haplotypes numbers are indicated from B1 to B14. M1, molecular marker (1 kb); M2, molecular marker (100 bp) and M3, molecular marker (50 bp). (DOC 163 kb)
248_2013_274_MOESM3_ESM.doc (168 kb)
ESM 3(DOC 168 kb)

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. 2.
    Antón J, Rosselló-Mora R, Rodriguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nature 5:782–791Google Scholar
  4. 4.
    Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E (2010) Isolation and characterisation of moderately halophilic bacteria from Tunisia solar saltern. Curr Microbiol 60:157–161CrossRefPubMedGoogle Scholar
  5. 5.
    Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518CrossRefPubMedGoogle Scholar
  6. 6.
    Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in Cyanobacteria. Mol Biol Evol 18:1057–1069CrossRefPubMedGoogle Scholar
  7. 7.
    Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archeal diversity at the great salt plains of Oklahoma described by cultivation and molecular analyses. Microb Ecol 58:519–528PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Cherif A, Borin S, Rizzi A, Houzari H, Boudabous A, Daffonchio D (2003) Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl Env Microbiol 69:33–40CrossRefGoogle Scholar
  9. 9.
    Echigo A, Hino M, Fukushima T, Mizuki T, Kamekura M, Usami R (2005) Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Systems. doi:10.1186/1746-1448-1-8
  10. 10.
    Ettoumi B, Bouhajja E, Borini S, Daffonchio D, Boudabous A, Cherif A (2010) Gammaproteobacteria occurrence and microdiversity in Tyrrhenian Sea sediments as revealed by cultivation-dependent and -independent approaches. Syst Appl Microbiol 23:222–231CrossRefGoogle Scholar
  11. 11.
    Ettoumi B, Raddadi N, Borin S, Daffonchio D, Boudabous A, Cherif A (2009) Diversity and phylogeny of culturable spore-forming bacilli isolated from marine sediments. J Basic Microbiol 49:1–11CrossRefGoogle Scholar
  12. 12.
    Follows MJ, Dutkiewicz S, Grant S, Chisholm SW (2007) Emergent biogeography of microbial communities in a model ocean. Science 315:1843–1846CrossRefPubMedGoogle Scholar
  13. 13.
    Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335–346CrossRefPubMedGoogle Scholar
  14. 14.
    Freitas DB, Reis MP, Lima-Bittencourt CI, Costa PS, Assis PS, Chartone-Souza E, Nascimento AMA (2008) Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res Notes 1:92PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Fuhrman AJ (2009) Microbial community structure and its functional implications. Nature 459:193–199CrossRefPubMedGoogle Scholar
  16. 16.
    Garcia-Martinez J, Acinas SG, Anton AI, Rodriguez-Valera F (1999) Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64CrossRefPubMedGoogle Scholar
  17. 17.
    Garcia MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading Gram-positive bacterium. I J Syst Evol Microbiol 55:1789–1795CrossRefGoogle Scholar
  18. 18.
    Ghozlan H, Deif H, Abu Kandil R, Sabry S (2006) Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J Gen Appl Microbiol 52:63–72CrossRefPubMedGoogle Scholar
  19. 19.
    Hacĕne H, Rafa F, Chebhouni N, Boutiba S, Bhatnagar T, Baratti JC, Ollivier B (2004) Biodiversity of prokaryotic microflora in El Golea Salt, Algerian Sahara. J Arid Environ 58:273–284CrossRefGoogle Scholar
  20. 20.
    Hedi A, Sadfi N, Fardeau ML, Rebib H, Cayol JL, Olivier B, Boudabous A (2009) Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid salt lake (Tunisia) under aerobic conditions. Int J Microbiol. doi: 10.1155/2009/731786
  21. 21.
    Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SA (2008) Cultivable bacterial diversity of alkaline Lonar Lake, India. Microb Ecol 55:163–172CrossRefPubMedGoogle Scholar
  22. 22.
    Kang S, Mills AL (2006) The effect of sample size in studies of soil microbial community structure. J Microbiol Methods 66:242–250CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar K, Tamura M, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  24. 24.
    Lakhdar R, Soussi M, Ben Ismail MH, M'Rabet A (2004) A Mediterranean Halocene restricted coastal lagon under arid climate: case of the sedimentary recored of Sabkha Boujmel (SE Tunisia). Palaeogeogr Palaeoclimatol Palaeoecol 241:177–191CrossRefGoogle Scholar
  25. 25.
    Limmathurotsakul D, Wuthiekanun V, Chantratita N, Wongsuvan G, Amornchai P et al (2010) Burkholderia pseudomallei is spatially distributed in soil in northeast Thailand. PLoS Negl Trop Dis 4(6):e694. doi:10.1371/journal.pntd.0000694 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Lomstein BA, Langerhuus AT, D'Hondt S, Jorgensen BB, Spivack AJ (2012) Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484:101–104CrossRefPubMedGoogle Scholar
  27. 27.
    Márquez MC, Sánchez-Porro C, Ventosa A (2011) Halophilic and haloalkaliphilic, aerobic endospore-forming bacteria in soil. In: Logan NA, De Vos P (eds) Endospore-forming soil bacteria. Soil biology vol 27. Springer, Berlin, pp 309–339Google Scholar
  28. 28.
    Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Env Microbiol 72:3887–3895CrossRefGoogle Scholar
  29. 29.
    Muyzer G, Smalla K (1998) Application of denaturing gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leen Wenhoek 73:127–141CrossRefGoogle Scholar
  30. 30.
    Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems. doi:10.1186/1746-1448-4
  31. 31.
    Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present novel microbial lineages: diversity in Bacillus. PloS ONE 4(2):e4438PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Rivadeneyra MA, Párraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46CrossRefPubMedGoogle Scholar
  33. 33.
    Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems. doi:10.1186/1746-1448-1-5
  34. 34.
    Sass AM, Mckew BA, Sass H, Fichtel J, Timmis KN, Mcgenity TJ (2008) Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Systems. doi:10.1186/1746-1448-4-8
  35. 35.
    Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Systems doi:10.1186/1746-1448-4-4
  36. 36.
    Siefert JL, Larios-Sanz M, Nakamura LK, Slepecky RA (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr Microbiol 41:84–88CrossRefPubMedGoogle Scholar
  37. 37.
    Spring S, Ludwing W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov, with description of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov, and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. I J Syst Bact 46:492–496CrossRefGoogle Scholar
  38. 38.
    Torsvik V, Overas L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, 13th edn. Springer, Berlin, pp 15–43CrossRefGoogle Scholar
  39. 39.
    Trabelsi D, Mengoni A, Elarbi Aouani M, Mhamdi R, Bazzicalupo M (2009) Genetic diversity and salt tolerance of bacterial communities from two Tunisian soils. Annals of Microbiol 59:25–32CrossRefGoogle Scholar
  40. 40.
    Ventosa A, Marquez CM, Garabito MJ, Arahal DR (1998) Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extrem 2:297–304CrossRefGoogle Scholar
  41. 41.
    Waino M, Tindall BJ, Schumann P, Ingvorsen K (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. I J Sys Bact 49:821–831CrossRefGoogle Scholar
  42. 42.
    Wall DH (2008) Biodiversity: extracting lessons from extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, 13th edn. Springer, Berlin, pp 71–84CrossRefGoogle Scholar
  43. 43.
    Yeon SH, Jeong WJ, Park JS (2005) The diversity of culturable organotrophic bacteria from local solar salterns. J Microb 43:1–10Google Scholar
  44. 44.
    Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soils 25:211–223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amel Guesmi
    • 1
  • Besma Ettoumi
    • 1
  • Darine El Hidri
    • 1
  • Jihene Essanaa
    • 1
  • Hanene Cherif
    • 1
  • Francesca Mapelli
    • 2
  • Ramona Marasco
    • 2
  • Eleonora Rolli
    • 2
  • Abdellatif Boudabous
    • 1
  • Ameur Cherif
    • 1
    • 3
  1. 1.Laboratoire MBA, Département de Biologie, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Department of Food, Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
  3. 3.Laboratoire Biotechnologie et Valorisation des Bio-Géo Ressources LR11ES31, Institut Supérieur de BiotechnologieUniversité de La ManoubaSidi Thabet, ArianaTunisia

Personalised recommendations