Microbial Ecology

, Volume 66, Issue 1, pp 158–170 | Cite as

Agricultural Management and Labile Carbon Additions Affect Soil Microbial Community Structure and Interact with Carbon and Nitrogen Cycling

  • Sean T. Berthrong
  • Daniel H. Buckley
  • Laurie E. Drinkwater
Soil Microbiology


We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose (13C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.


Microbial Community Soil Organic Matter Microbial Biomass Fungal Community Soil Microbial Community 



We thank the Buckley Lab, Drinkwater Lab, Jenny Kao-Kniffen, Sarah M. Carver, Biao Zhu, and several anonymous reviewers for useful comments on a previous version of this manuscript. We thank Klass and Mary-Howell Martens and Dave Ingram for providing the field sites. Heather Scott and Matt Gura provided valuable field and laboratory assistance. Support was provided by the USDA Managed Ecosystems Program (Grant 0207638 to Drinkwater et al.) and by the Agriculture and Food Research Initiative (competitive grant No. 2012-67012-19816 to STB) from the USDA National Institute of Food and Agriculture.

Supplementary material

248_2013_225_MOESM1_ESM.pdf (25 kb)
Fig. S1 Soil incubator design. Incubators were built with sterilized plastic vacuum filtration units with a 0.2-μm PES filter. A 45-μm glass fiber prefilter was secured with silicon sealant above the nylon filter to avoid clogging. Inert PTFE chips were added in the center of the incubator to support a 30-ml Erlenmeyer flask with 0.5 M KOH (the CO2 trap). During simulated rainfall events, the trap was removed and replaced, and between rainfalls, the incubators were sealed with a lid and parafilm (PDF 25 kb)
248_2013_225_MOESM2_ESM.pdf (24 kb)
Fig. S2 Schematic diagram of the steps in the incubator process (PDF 24 kb)


  1. 1.
    Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a meta-analysis of N-15 field experiments. Ecol Appl 19(8):2167–2184. doi: 10.1890/08-1122.1 PubMedCrossRefGoogle Scholar
  2. 2.
    Merino A, Perez-Batallon P, Macias F (2004) Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biol Biochem 36(6):917–925. doi: 10.1016/j.soilbio.2004.02.006 CrossRefGoogle Scholar
  3. 3.
    Tonitto C, David MB, Drinkwater LE (2009) Modeling N2O flux from an Illinois agroecosystem using Monte Carlo sampling of field observations. Biogeochemistry 93(1–2):31–48. doi: 10.1007/s10533-008-9271-y CrossRefGoogle Scholar
  4. 4.
    Tonitto C, David MB, Li CS, Drinkwater LE (2007) Application of the DNDC model to tile-drained Illinois agroecosystems: model comparison of conventional and diversified rotations. Nutr Cycl Agroecosys 78(1):65–81CrossRefGoogle Scholar
  5. 5.
    Drinkwater LE, Snapp SS (2007) Understanding and managing the rhizosphere in agroecosystems. In: Cardon ZG, Whitebeck JL (eds) The rhizosphere: an ecological perspective. Elesevier, BostonGoogle Scholar
  6. 6.
    Fauci MF, Dick RP (1994) Soil microbial dynamics — short-term and long-term effects of inorganic and organic ntirogen. Soil Sci Soc Am J 58(3):801–806CrossRefGoogle Scholar
  7. 7.
    Fraser DG, Doran JW, Sahs WW, Lesoing GW (1988) Soil microbial populations and activities under conventional and organic management. J Environ Qual 17(4):585–590. doi: 10.2134/jeq1988.00472425001700040011x CrossRefGoogle Scholar
  8. 8.
    Stark CH, Condron LM, O'Callaghan M, Stewart A, Di HJ (2008) Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralisation resulting from farm management history and organic matter amendments. Soil Biol Biochem 40(6):1352–1363. doi: 10.1016/j.soilbio.2007.09.025 CrossRefGoogle Scholar
  9. 9.
    Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34(8):1073–1082. doi: 10.1016/S0038-0717(02)00040-8 CrossRefGoogle Scholar
  10. 10.
    Maul J, Drinkwater L (2010) Short-term plant species impact on microbial community structure in soils with long-term agricultural history. Plant Soil 330(1–2):369–382. doi: 10.1007/s11104-009-0211-y CrossRefGoogle Scholar
  11. 11.
    Potthoff M, Steenwerth KL, Jackson LE, Drenovsky RE, Scow KM, Joergensen RG (2006) Soil microbial community composition as affected by restoration practices in California grassland. Soil Biol Biochem 38(7):1851–1860. doi: 10.1016/j.soilbio.2005.12.009 CrossRefGoogle Scholar
  12. 12.
    Stark C, Condron LM, Stewart A, Di HJ, O'Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35(1):79–93. doi: 10.1016/j.apsoil.2006.05.001 CrossRefGoogle Scholar
  13. 13.
    Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42(1):11–21. doi: 10.1007/s002480000108 PubMedGoogle Scholar
  14. 14.
    Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5(6):441–452. doi: 10.1046/j.1462-2920.2003.00404.x PubMedCrossRefGoogle Scholar
  15. 15.
    Cavigelli MA, Robertson GP (2000) The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81(5):1402–1414. doi: 10.1890/0012-9658(2000)081[1402:tfsodc]2.0.co;2 CrossRefGoogle Scholar
  16. 16.
    Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33(3):297–310. doi: 10.1016/s0038-0717(00)00141-3 CrossRefGoogle Scholar
  17. 17.
    Hsu SF, Buckley DH (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3(1):124–136. doi: 10.1038/ismej.2008.82 PubMedCrossRefGoogle Scholar
  18. 18.
    Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N(2)O emissions from soil. Glob Change Biol 17(3):1497–1504. doi: 10.1111/j.1365-2486.2010.02334.x CrossRefGoogle Scholar
  19. 19.
    Webster G, Embley TM, Freitag TE, Smith Z, Prosser JI (2005) Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils. Environ Microbiol 7(5):676–684. doi: 10.1111/j.1462-2920.2005.00740.x PubMedCrossRefGoogle Scholar
  20. 20.
    Webster G, Embley TM, Prosser JI (2002) Grassland management regimens reduce small-scale heterogeneity and species diversity of beta-proteobacterial ammonia oxidizer populations. Appl Environ Microb 68(1):20–30. doi: 10.1128/AEM.68.1.20-30.2002 CrossRefGoogle Scholar
  21. 21.
    Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H, Crews TE (2010) Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agric Ecosyst Environ 137(1–2):13–24. doi: 10.1016/j.agee.2009.11.008 CrossRefGoogle Scholar
  22. 22.
    Mader P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697. doi: 10.1126/science.1071148 PubMedCrossRefGoogle Scholar
  23. 23.
    Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fert Soils 45(2):115–131. doi: 10.1007/s00374-008-0334-y CrossRefGoogle Scholar
  24. 24.
    de Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188(4):1055–1064. doi: 10.1111/j.1469-8137.2010.03427.x PubMedCrossRefGoogle Scholar
  25. 25.
    Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sc 165(4):382–396. doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-# CrossRefGoogle Scholar
  26. 26.
    Hamilton E, Frank D (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82(9):2397–2402. doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 CrossRefGoogle Scholar
  27. 27.
    Dijkstra FA, Bader NE, Johnson DW, Cheng WX (2009) Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol Biochem 41(6):1080–1087. doi: 10.1016/j.soilbio.2009.02.013 CrossRefGoogle Scholar
  28. 28.
    Stark C, Condron LM, Stewart A, Di HJ, O'Callaghan M (2006) Effects of past and current management practices on crop yield and nitrogen leaching — a comparison of organic and conventional cropping systems. N Z J Crop Hortic Sci 34(3):207–215CrossRefGoogle Scholar
  29. 29.
    Schipanski ME, Drinkwater LE (2011) Nitrogen fixation of red clover interseeded with winter cereals across a management-induced fertility gradient. Nutr Cycl Agroecosys 90(1):105–119. doi: 10.1007/s10705-010-9415-z CrossRefGoogle Scholar
  30. 30.
    Linn DM, Doran JW (1984) Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48(6):1267–1272CrossRefGoogle Scholar
  31. 31.
    Linn DM, Doran JW (1984) Aerobic and anaerobic microbial-populations in no-till and plowed soils. Soil Sci Soc Am J 48(4):794–799CrossRefGoogle Scholar
  32. 32.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NYGoogle Scholar
  33. 33.
    Blackwood CB, Marsh T, Kim SH, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microb 69(2):926–932. doi: 10.1128/AEM.69.2.926-932.2003 CrossRefGoogle Scholar
  34. 34.
    Bruce KD (1997) Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling. Appl Environ Microb 63(12):4914–4919Google Scholar
  35. 35.
    Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microb 63(11):4516–4522Google Scholar
  36. 36.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. P Natl Acad Sci USA 103(3):626–631. doi: 10.1073/pnas.0507535103 CrossRefGoogle Scholar
  37. 37.
    Vilgalys R, Gonzalez D (1990) Organization of ribosomal DNA in the basidiomycete thanatephorus-praticola. Curr Genet 18(3):277–280. doi: 10.1007/bf00318394 PubMedCrossRefGoogle Scholar
  38. 38.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: Innis MA (ed) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  39. 39.
    Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351. doi: 10.1038/ismej.2010.58 PubMedCrossRefGoogle Scholar
  40. 40.
    Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microb 71(7):4117–4120. doi: 10.1128/AEM.71.7.4117-4120.2005 CrossRefGoogle Scholar
  41. 41.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad Sci USA 108(Supplement 1):4516–4522. doi: 10.1073/pnas.1000080107 CrossRefGoogle Scholar
  42. 42.
    Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171. doi: 10.1186/1471-2105-10-171
  43. 43.
    Abdo Z, Schuette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8(5):929–938. doi: 10.1111/j.1462-2920.2005.00959.x PubMedCrossRefGoogle Scholar
  44. 44.
    Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microb Ecol 54(3):375–380. doi: 10.1016/j.femsec.2005.05.002 CrossRefGoogle Scholar
  45. 45.
    McCune B, Grace JB (2002) Analysis of ecologial communities. MjM Software, Gleneden Beach, ORGoogle Scholar
  46. 46.
    Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4(4):553–563. doi: 10.1038/ismej.2009.136 PubMedCrossRefGoogle Scholar
  47. 47.
    Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microb 73(16):5276–5283. doi: 10.1128/aem.00514-07 CrossRefGoogle Scholar
  48. 48.
    Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microb 73(21):7059–7066. doi: 10.1128/Aem.00358-07 CrossRefGoogle Scholar
  49. 49.
    Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120. doi: 10.1128/aem.00335-09 PubMedCrossRefGoogle Scholar
  50. 50.
    Nordgren A (1988) Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples. Soil Biol Biochem 20(6):955–957. doi: 10.1016/0038-0717(88)90110-1 CrossRefGoogle Scholar
  51. 51.
    Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17(6):837–842. doi: 10.1016/0038-0717(85)90144-0 CrossRefGoogle Scholar
  52. 52.
    Murage EW, Voroney PR (2007) Modification of the original chloroform fumigation extraction technique to allow measurement of delta C-13 of soil microbial biomass carbon. Soil Biol Biochem 39(7):1724–1729. doi: 10.1016/j.soilbio.2007.01.026 CrossRefGoogle Scholar
  53. 53.
    Marriott E, Wander M (2006) Total and labile soil organic matter in organic and conventional farming systems. Soil Sci Soc Am J 70:950–959. doi: 10.2136/sssaj2005.0241 CrossRefGoogle Scholar
  54. 54.
    Schipanski ME, Drinkwater LE, Russelle MP (2010) Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant Soil 329(1–2):379–397. doi: 10.1007/s11104-009-0165-0 CrossRefGoogle Scholar
  55. 55.
    Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, O'Donnell AG (2010) Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem 42(9):1624–1631. doi: 10.1016/j.soilbio.2010.06.002 CrossRefGoogle Scholar
  56. 56.
    Compton JE, Watrud LS, Porteous LA, DeGrood S (2004) Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecol Manag 196(1):143–158. doi: 10.1016/j.foreco.2004.03.017 CrossRefGoogle Scholar
  57. 57.
    Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol Manag 196(1):159–171. doi: 10.1016/j.foreco.2004.03.018 CrossRefGoogle Scholar
  58. 58.
    Fierer N, Morse JL, Berthrong ST, Bernhardt ES, Jackson RB (2007) Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88(9):2162–2173. doi: 10.1890/06-1746.1 PubMedCrossRefGoogle Scholar
  59. 59.
    Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: Effects of substrate loading rates. Soil Biol Biochem 31(1):145–153. doi: 10.1016/S0038-0717(98)00117-5 CrossRefGoogle Scholar
  60. 60.
    De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33(9):1163–1170. doi: 10.1016/S0038-0717(01)00020-7 CrossRefGoogle Scholar
  61. 61.
    Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biol Biochem 17(2):181–187. doi: 10.1016/0038-0717(85)90113-0 CrossRefGoogle Scholar
  62. 62.
    Clarholm M (2005) Soil protozoa: an under-researched microbial group gaining momentum. Soil Biol Biochem 37(5):811–817. doi: 10.1016/j.soilbio.2004.11.002 CrossRefGoogle Scholar
  63. 63.
    Cheng WX (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol Biochem 41(9):1795–1801. doi: 10.1016/j.soilbio.2008.04.018 CrossRefGoogle Scholar
  64. 64.
    Crowther TW, Jones TH, Boddy L, Baldrian P (2011) Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biol Biochem 43(10):2060–2068. doi: 10.1016/j.soilbio.2011.06.003 CrossRefGoogle Scholar
  65. 65.
    Hofmockel KS, Gallet-Budynek A, McCarthy HR, Currie WS, Jackson RB, Finzi AC (2011) Sources of increased N uptake in forest trees growing under elevated CO2: results of a large-scale N-15 study. Glob Change Biol 17(11):3338–3350. doi: 10.1111/j.1365-2486.2011.02465.x CrossRefGoogle Scholar
  66. 66.
    Krome K, Rosenberg K, Bonkowski M, Scheu S (2009) Grazing of protozoa on rhizosphere bacteria alters growth and reproduction of Arabidopsis thaliana. Soil Biol Biochem 41(9):1866–1873. doi: 10.1016/j.soilbio.2009.06.008 CrossRefGoogle Scholar
  67. 67.
    Le Roux X, Poly F, Currey P, Commeaux C, Hai B, Nicol GW, Prosser JI, Schloter M, Attard E, Klumpp K (2008) Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J 2(2):221–232. doi: 10.1038/ismej.2007.109 PubMedCrossRefGoogle Scholar
  68. 68.
    Tourna M, Freitag TE, Prosser JI (2010) Stable isotope probing analysis of interactions between ammonia oxidizers. Appl Environ Microb 76(8):2468–2477. doi: 10.1128/aem.01964-09 CrossRefGoogle Scholar
  69. 69.
    Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microb 77(13):4618–4625. doi: 10.1128/aem.00136-11 CrossRefGoogle Scholar
  70. 70.
    Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396(6708):262–265. doi: 10.1038/24376 CrossRefGoogle Scholar
  71. 71.
    Holland EA, Coleman DC (1987) Litter placement effects on microbial and organic-matter dynamics in an agroecosystem. Ecology 68(2):425–433. doi: 10.2307/1939274 CrossRefGoogle Scholar
  72. 72.
    Kassim G, Martin JP, Haider K (1981) Incorporation of a wide variety of organic substrate carbons into soil biomass as estimated by the fumigation procedure. Soil Sci Soc Am J 45(6):1106–1112CrossRefGoogle Scholar
  73. 73.
    Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371. doi: 10.1016/j.soilbio.2010.04.003 CrossRefGoogle Scholar
  74. 74.
    Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35(9):1183–1192. doi: 10.1016/s0038-0717(03)00179-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sean T. Berthrong
    • 1
  • Daniel H. Buckley
    • 2
  • Laurie E. Drinkwater
    • 1
  1. 1.Department of HorticultureCornell UniversityIthacaUSA
  2. 2.Department of Crop and Soil SciencesCornell UniversityIthacaUSA

Personalised recommendations