Microbial Ecology

, Volume 66, Issue 2, pp 335–350 | Cite as

Diversity of Endosymbiotic Nostoc in Gunnera magellanica (L) from Tierra del Fuego, Chile

  • M. A. Fernández-Martínez
  • A. de los Ríos
  • L. G. Sancho
  • S. Pérez-Ortega
Environmental Microbiology


Global warming is causing ice retreat in glaciers worldwide, most visibly over the last few decades in some areas of the planet. One of the most affected areas is the region of Tierra del Fuego (southern South America). Vascular plant recolonisation of recently deglaciated areas in this region is initiated by Gunnera magellanica, which forms symbiotic associations with the cyanobacterial genus Nostoc, a trait that likely confers advantages in this colonisation process. This symbiotic association in the genus Gunnera is notable as it represents the only known symbiotic relationship between angiosperms and cyanobacteria. The aim of this work was to study the genetic diversity of the Nostoc symbionts in Gunnera at three different, nested scale levels: specimen, population and region. Three different genomic regions were examined in the study: a fragment of the small subunit ribosomal RNA gene (16S), the RuBisCO large subunit gene coupled with its promoter sequence and a chaperon-like protein (rbcLX) and the ribosomal internal transcribed spacer (ITS) region. The identity of Nostoc as the symbiont was confirmed in all the infected rhizome tissue analysed. Strains isolated in the present study were closely related to strains known to form symbioses with other organisms, such as lichen-forming fungi or bryophytes. We found 12 unique haplotypes in the 16S rRNA (small subunit) region analysis, 19 unique haplotypes in the ITS region analysis and 57 in the RuBisCO proteins region (rbcLX). No genetic variability was found among Nostoc symbionts within a single host plant while Nostoc populations among different host plants within a given sampling site revealed major differences. Noteworthy, interpopulation variation was also shown between recently deglaciated soils and more ancient ones, between eastern and western sites and between northern and southern slopes of Cordillera Darwin. The cell structure of the symbiotic relationship was observed with low-temperature scanning electron microscopy, showing changes in morphology of both cyanobiont cells (differentiate more heterocysts) and plant cells (increased size). Developmental stages of the symbiosis, including cell walls and membranes and EPS matrix states, were also observed.


Internal Transcribe Spacer Nostoc Symbiotic Association Host Cell Wall Late Glacial Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Fernando Pinto (ICA, CSIC) for his technical assistance; Dr. R. Rozzi and Dr. F. Massardo and their institutions (Fundación Omora and Universidad de Magallanes) for their scientific supervision in the organisation of the field work and their logistic support. Special acknowledgment is due to Captain Mansilla and the crew of the vessel ‘Don Pelegrín’ for their skilful navigation in the highly demanding southern channels and for their kind hospitality on board, as well as to Dr. M. Arróniz-Crespo for her specimen collection in sites 8 and 9. Special thanks are due to Dr. W. B. Sanders for his help with English expression. This work was supported by grants CTM2009-12838-CO4-01, CTM2009-12838-CO4-03 and CTM2012-38222-C02-02 from the Spanish Ministry of Economy and Competitiveness. S. Pérez-Ortega is funded by the program JAE-Doc (Spanish Research Scientific Council) and M.A. Fernández-Martínez received funding through by the FPI program (Ministry of Economy and Competitiveness).


  1. 1.
    Matthews JA (1992) The ecology of recently deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Chapin FS III, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64(2):149–175CrossRefGoogle Scholar
  3. 3.
    Hoppert M, Flies C, Günzl B, Schneider J (2004) Colonization strategies of lithobionthic microorganisms on carbonate rocks. Environ Geol 46:421–428CrossRefGoogle Scholar
  4. 4.
    De los Ríos A, Raggio J, Pérez-Ortega S, Vivas M, Pintado A, Allan Green TG, Ascaso C, Sancho L (2011) Anatomical, morphological and ecophysiological strategies in Placopsis pycnotheca (lichenized fungi, Ascomycota) allowing rapid colonization of recently deglaciated soils. doi: 10.1016/j.flora.2011.05.002
  5. 5.
    Liengen T, Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in high arctic tundra, Spitsbergen. Arct Alp Res 29:470–477CrossRefGoogle Scholar
  6. 6.
    Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in primary succession on the Tanana river floodplain. Ecology 83(1):88–103CrossRefGoogle Scholar
  7. 7.
    Duc L, Noll M, Meier BE, Bürgmann H, Zeyer J (2009) High diversity of diazotrophs in the forefield of a receding Alpine glacier. Microb Ecol 57:179–190PubMedCrossRefGoogle Scholar
  8. 8.
    Rivera A, Casassa G, Acuña C, Lange H (2000) Variaciones recientes de glaciares en Chile. Invest Geogr (Chile) 34:29–60Google Scholar
  9. 9.
    Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  10. 10.
    Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Marine Sci 2:145–173CrossRefGoogle Scholar
  11. 11.
    Rahmstorf S (2010) A new view on sea level rise. Nat Rep Cli Chang 4:44–45Google Scholar
  12. 12.
    Wynn-Williams DD (1996) Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb Ecol 31:177–188CrossRefGoogle Scholar
  13. 13.
    Vincent WF (2000) Cyanobacterial dominance in the Polar Regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, The NetherlandsGoogle Scholar
  14. 14.
    Takeuchi N (2011) Glacial ecosystems. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of ice, snow and glaciers. Encycl Earth Sci Ser. Springer, Berlin, pp. 330–331Google Scholar
  15. 15.
    Davey MC, Rothery P (1993) Primary colonization by microalgae in relation to spatial variation in edaphic factors on Antarctic fellfield soils. J Ecol 81:335–343CrossRefGoogle Scholar
  16. 16.
    Hodson A, Anesio AM, Tranter M, Fountain AG, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67CrossRefGoogle Scholar
  17. 17.
    Grubb PJ (1986) The ecology of establishment. In: Bradshaw AD, Goode DA, Thorpe E (eds) Ecology and design in landscape. Symp Br Ecol Soc 24:83–97Google Scholar
  18. 18.
    Frenot Y, Van Vliet-Lanoë B, Gloaguen JC (1995) Particle transformation and initial soil development on a glacier foreland, Kerguelen Islands, Subantarctic. Arct Alp Res 27:107–115CrossRefGoogle Scholar
  19. 19.
    Frenot Y, Gloaguen JC, Cannavacciuolo M, Bellido A (1998) Primary succession on glacier forelands in the Subantarctic Kerguelen Islands. J Veg Sci 9:75–84CrossRefGoogle Scholar
  20. 20.
    Walker JR (1993) Nitrogen fixers and species replacements in primary succession. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell, OxfordGoogle Scholar
  21. 21.
    Stewart WDP, Rowell P, Rai AN (1980) Symbiotic nitrogen-fixing cyanobacteria. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, New York, pp 239–277Google Scholar
  22. 22.
    Stewart WDP, Rowell P, Rai AN (1983) Cyanobacteria-eukariotic plant symbiosis. Ann Microb (Instituto Pasteur) 134B:205–228CrossRefGoogle Scholar
  23. 23.
    Smith DC, Douglas AE (1987) The biology of symbiosis. Edward Arnold, Baltimore, 302Google Scholar
  24. 24.
    Meeks JC (1998) Symbiosis between nitrogen-fixing cyanobateria and plants. BioSci 48(4):266–276CrossRefGoogle Scholar
  25. 25.
    Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478PubMedCrossRefGoogle Scholar
  26. 26.
    Ow MC, Gantar M, Elhai J (1999) Reconstitution of a cycad-cyanobacterial association. Symbiosis 27:125–134Google Scholar
  27. 27.
    Costa JL, Martínez Romero E, Lindblad P (2004) Sequence based data supports a single Nostoc strain in individual coralloid roots of cycads. FEMS Microb Ecol 49:481–487CrossRefGoogle Scholar
  28. 28.
    Tajhuddin N, Muralitharan G, Sundaramoorthy M, Ramamoorthy R, Ramachandran S, Abdulkadar Akbarsha M, Gunasekaran M (2010) Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microb 50:254–265CrossRefGoogle Scholar
  29. 29.
    Rasmussen U, Johansson C, Renglin A, Petersson C, Bergman B (1996) A molecular characterization of the Gunnera–Nostoc symbiosis: comparison with Rhizobium– and Agrobacterium–plant interactions. New Phytol 133:391–398CrossRefGoogle Scholar
  30. 30.
    Bergman B, Johansson C, Söderbäck E (1992) Tansley Review no. 42. The Nostoc–Gunnera symbiosis. New Phytol 122:379–400CrossRefGoogle Scholar
  31. 31.
    Söderbäck E, Bergman B (1993) The Nostoc–Gunnera symbiosis: carbon fixation and translocation. Physiol Plant 89:125–132CrossRefGoogle Scholar
  32. 32.
    Black K, Osborne B (2004) An assessment of photosynthethic downregulation in cyanobacteria from the Gunnera–Nostoc symbiosis. New Phytol 162:125–132CrossRefGoogle Scholar
  33. 33.
    Osborne B, Bergman B (2009) Why does Gunnera do it and other Angiosperm don’t? An evolutionary perspective on the Gunnera–Nostoc symbiosis. Microb Monogr 8:207–224CrossRefGoogle Scholar
  34. 34.
    Wilkinson HP, Wanntorp L (2007) Gunneraceae. Flowering plants—Eudicots. In: The families and genera of vascular plants, vol. 9. Springer, Berlin, pp. 177–183Google Scholar
  35. 35.
    Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31(1):2–18CrossRefGoogle Scholar
  36. 36.
    Rasmussen U, Svenning MM (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microb 176:204–210CrossRefGoogle Scholar
  37. 37.
    Guevara R, Armesto JJ, Caru M (2002) Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR-STRR fingerprinting. Microb Ecol 44:127–136PubMedCrossRefGoogle Scholar
  38. 38.
    Holmlund P, Fuenzalida H (1995) Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, Southern Chile. J Glaciol 41(139):465–463Google Scholar
  39. 39.
    Burgos JJ (1985) Clima del extremo sur de Sudamérica. In: Boelcke O, Moore DM, Roig FA (eds) Trans Bot Patagonia Austral. CONICET (Argentina), Royal Society (Gran Bretaña) and Instituto de la Patagonia (Chile).Google Scholar
  40. 40.
    Koppes M, Hallet B, Anderson J (2009) Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego. J Glaciol 55(190):207–220CrossRefGoogle Scholar
  41. 41.
    Capel Molina JJ (1983) Reflexiones geografícas acerca del clima frío Oceánico del Hemisferio Sur, Punta Arenas (Chile). Rev Geogr Norte Grande 10:3–16Google Scholar
  42. 42.
    Xercavins Comas A (1984) Notas sobre el clima de Magallanes (Chile). Rev Geogr 18(1):95–110Google Scholar
  43. 43.
    Endlicher W, Santana Aguila A (1988) El clima del Sur de la Patagonia y sus aspectos ecológicos. Un siglo de mediciones climatológicas en Punta Arenas. Ans Inst Pat Cs Nats, Punta Arenas (Chile) 18:57–86Google Scholar
  44. 44.
    Koremblit G, Forte Lay JA (1991) Contribución al estudio agroclimático del norte de Tierra del Fuego (Argentina). Ans Inst Pat Cs Nats, Punta Arenas (Chile) 20(1):125–134Google Scholar
  45. 45.
    Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Res Newsl 127:15–19Google Scholar
  46. 46.
    Cubero ÓF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized and other fungi. Plant Syst Evol 216:243–249CrossRefGoogle Scholar
  47. 47.
    O’Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378CrossRefGoogle Scholar
  48. 48.
    Rudi K, Skulberg OM, Jakobsen KS (1998) Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacter 180:3453–3461Google Scholar
  49. 49.
    Nübel U, García-Pichel F, Muyzer G (1997) PCR primers to amplify rRNA genes from cyanobacteria. Appl Env Microb 63(8):3327–3332Google Scholar
  50. 50.
    Wilmotte A, Van der Rauwera G, De Wachter R (1993) Structure of the 16-S ribosomal RNA of the thermophilic cyanobacterium chlorogloeopsis HTF (‘mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100PubMedCrossRefGoogle Scholar
  51. 51.
    Janse I, Meima M, Kardinaal WEA, Zwart G (2003) High-resolution differentation of cyanobacteria by using rRNA–internal transcribed spacer denaturing gradient gel electrophoresis. Appl Env Microb 69(11):6634–6643CrossRefGoogle Scholar
  52. 52.
    Atschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403.410Google Scholar
  53. 53.
    Thompson HD, Higgins DJ, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple alignment through sequence weighting, position specific-gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680CrossRefGoogle Scholar
  54. 54.
    Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Acids Symp Ser 41:95–98Google Scholar
  55. 55.
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  56. 56.
    Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  57. 57.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinforma 25:1451–1452CrossRefGoogle Scholar
  58. 58.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, 448Google Scholar
  59. 59.
    Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  60. 60.
    Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660PubMedCrossRefGoogle Scholar
  61. 61.
    Schloss PD, Westcott SL, Ryabin T, Hall J, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Env Microb 75(23):7537–7541CrossRefGoogle Scholar
  62. 62.
    Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400PubMedCrossRefGoogle Scholar
  63. 63.
    Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  64. 64.
    Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  65. 65.
    Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256PubMedCrossRefGoogle Scholar
  66. 66.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723CrossRefGoogle Scholar
  67. 67.
    Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA squences. Lect Math Life Sci 17:57–86Google Scholar
  68. 68.
    Hasegawa M, Kishino H, Saitou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32(5):443–445PubMedCrossRefGoogle Scholar
  69. 69.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi: 10.1093/molbev/msr121 Google Scholar
  70. 70.
    Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14:717–724PubMedCrossRefGoogle Scholar
  71. 71.
    Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572–1574CrossRefGoogle Scholar
  72. 72.
    De los Ríos A, Ascaso C, Wierzchos J (1999) Study of lichens with different state of hydration by the combination of low temperature scanning electron and confocal laser scanning microscopies. Int Microb 2:251–257Google Scholar
  73. 73.
    Bergman B, Matveyev A, Rasmussen U (1996) Chemical signalling in cyanobacterial–plant symbioses. Trends Plant Sci 1:191–197CrossRefGoogle Scholar
  74. 74.
    Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium–plant symbioses. Tansley review No 116. New Phytol 147:449–481CrossRefGoogle Scholar
  75. 75.
    Svenning MM, Eriksson T, Rasmussen U (2005) Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microb 183:19–26CrossRefGoogle Scholar
  76. 76.
    Bonnett HT, Silvester WB (1981) Specificity in the Gunnera–Nostoc endosymbiosis. New Phytol 89:121–128CrossRefGoogle Scholar
  77. 77.
    Costa JL, Paulsrud P, Rikikinen J, Lindblad P (2001) Genetic diversity of Nostoc symbionts endophytically associated with two bryophyte species. Appl Env Microb 67:4393–4396CrossRefGoogle Scholar
  78. 78.
    Paulsrud P, Lindblad P (1998) Sequence variation of the tRNAleu intron as a marker for genetic diversity and specificity of symbiotic cyanobacteria in some lichens. Appl Env Microb 64:310–315Google Scholar
  79. 79.
    Nilsson M, Bergman B, Rasmussen U (2000) Cyanobacterial diversity in geographically related and distant host plant of the genus Gunnera. Arch Microb 173:97–102CrossRefGoogle Scholar
  80. 80.
    Meeks JC, Elhai J (2002) Regulation of cellular differentation in filamentous cyanobacterial in free-living and plant-associated symbiotic growth states. Microb Mol Rev 66:94–121CrossRefGoogle Scholar
  81. 81.
    Rabassa J, Coronato A, Martínez Ó (2011) Late Cenozoic glaciatons in Patagonia and Tierra del fuego: an updated review. Biol J Linnean Soc 103:316–335CrossRefGoogle Scholar
  82. 82.
    Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. M Ecol 53:110–122Google Scholar
  83. 83.
    Markgraf V, Huber UM (2010) Late and Postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeogr Palaeoclim Palaeoecol 297:351–366CrossRefGoogle Scholar
  84. 84.
    Gantar M, Kerby NW, Rowell P (1993) Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria. III. The role of a hormogonia-promoting factor. New Phytol 124:505–513CrossRefGoogle Scholar
  85. 85.
    Herdman M, Rippka R (1988) Cellular differentiation: hormogonia and baeocytes. Methods Enzymol 167:232–242CrossRefGoogle Scholar
  86. 86.
    Martínez-Murcia AJ, Collins MD (1990) A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing on 16S rRNA. FEMS Microb Lett 70:73–83CrossRefGoogle Scholar
  87. 87.
    Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martínez-Murcia A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12CrossRefGoogle Scholar
  88. 88.
    Amann RI, Lin C, Key R, Montgomery L, Stahl DA (1992) Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst Appl Microbiol 15:23–31CrossRefGoogle Scholar
  89. 89.
    Fox GE, Wisotzeky JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170PubMedCrossRefGoogle Scholar
  90. 90.
    Martínez-Murcia AJ, Benlloch S, Collins MD (1992) Phylogenetic interrelationships of the genera Aeromonas and Pleisiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridization. Int J Syst Bacteriol 50:412–421CrossRefGoogle Scholar
  91. 91.
    Hart MW, Sunday J (2007) Things fall apart: biological species from unconnected parsimony networks. Biol Lett 3:509–512PubMedCrossRefGoogle Scholar
  92. 92.
    Stackebrand E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  93. 93.
    García-Martínez J, Acinas SG, Antón AI, Rodríguez-Valera F (1999) Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Meths 36(1–2):55–64CrossRefGoogle Scholar
  94. 94.
    Han D, Fan Y, Hu Z (2009) An evaluation of four phylogenetic markers in Nostoc: implications for cyanobacterial phylogenetic studies at the intrageneric level. Curr Microbiol 58:170–176PubMedCrossRefGoogle Scholar
  95. 95.
    Silvester WB, McNamara PJ (1976) The infection process and ultrastructure of the GunneraNostoc symbiosis. New Phytol 77:135–141CrossRefGoogle Scholar
  96. 96.
    Towata EM (1985) Morphometric and cytochemical ultrastructural analyses of the Gunnera kaalensis/Nostoc symbiosis. Bot Gazzette 146(3):293–301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. A. Fernández-Martínez
    • 1
  • A. de los Ríos
    • 1
  • L. G. Sancho
    • 2
  • S. Pérez-Ortega
    • 1
  1. 1.Museo Nacional de Ciencias Naturales-CSICMadridSpain
  2. 2.Departamento de Biología Vegetal II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain

Personalised recommendations