Advertisement

Microbial Ecology

, Volume 65, Issue 3, pp 638–651 | Cite as

Comparison of Antibiotic Resistance, Biofilm Formation and Conjugative Transfer of Staphylococcus and Enterococcus Isolates from International Space Station and Antarctic Research Station Concordia

  • Katarzyna Schiwon
  • Karsten Arends
  • Katja Marie Rogowski
  • Svea Fürch
  • Katrin Prescha
  • Türkan Sakinc
  • Rob Van Houdt
  • Guido Werner
  • Elisabeth Grohmann
Environmental Microbiology

Abstract

The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.

Keywords

Staphylococcus Horizontal Gene Transfer International Space Station Antibiotic Resistance Gene Conjugative Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants Microbial ISS Gene Exchange and Concordia microbial dynamics from BMWi/DLR (to E.G.) and from Belspo/PRODEX (to R.V.H.). Support of the European Space Agency (ESA) as well as the French Polar Institute (IPEV) and the Italian Antarctic Programme (PNRA) are acknowledged. We thank Vacheslav Ilyin for providing crew samples and all MISSEX and COMICS partners for their constant support and advice. Skillful technical assistance of Christine Bohn and Carola Fleige is highly acknowledged. Special thanks to Prof. Dr. Vincent Perreten for providing the strains E. casseliflavus UC73, E. faecalis RE25, E. faecium SF11770, Enterococcus gallinarum SF9117, L. lactis K214 and S. haemolyticus VPS617, and to Prof. David Dubnau for Bacillus subtilis BP662 and B. subtilis BD1156.

References

  1. 1.
    Novikova ND, de Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12PubMedCrossRefGoogle Scholar
  2. 2.
    Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57:640–648PubMedCrossRefGoogle Scholar
  3. 3.
    Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space missions. Planet Space Sci 60:115–120CrossRefGoogle Scholar
  4. 4.
    Augustowska M, Dutkiewicz J (2006) Variability of airborne microflora in a hospital ward within a period of one year. Ann Agric Environ Med 13:99–106PubMedGoogle Scholar
  5. 5.
    Bouillard L, Michel O, Dramaix M, Devleeschouwer M (2005) Bacterial contamination of indoor air, surfaces, and settled dust, and related dust endotoxin concentrations in healthy office buildings. Ann Agric Environ Med 12:187–192PubMedGoogle Scholar
  6. 6.
    Gorny RL, Dutkiewicz J (2002) Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries. Ann Agric Environ Med 9:17–23PubMedGoogle Scholar
  7. 7.
    Gu J (2007) Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: a review. Int Biodeterior Biodegra 59:170–179CrossRefGoogle Scholar
  8. 8.
    Matin A, Lynch SV (2005) Investigating the threat of bacteria grown in space. ASM News 71:235–240Google Scholar
  9. 9.
    Mauclaire L, Egli M (2010) Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates. FEMS Immunol Med Microbiol 59:350–356PubMedGoogle Scholar
  10. 10.
    Horneck G, Klaus DM, Mancinelli RL (2010) Space Microbiology. Microbiol Mol Biol Rev 74:121–156PubMedCrossRefGoogle Scholar
  11. 11.
    Vukanti R, Model M, Leff L (2012) Effect of modeled reduced gravity conditions on bacterial morphology and physiology. BMC Microbiol 12:4–14PubMedCrossRefGoogle Scholar
  12. 12.
    Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Micro 3:722–732CrossRefGoogle Scholar
  13. 13.
    Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and disease. Science 301:790–793PubMedCrossRefGoogle Scholar
  14. 14.
    Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A (2010) Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554PubMedCrossRefGoogle Scholar
  15. 15.
    Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13:632–639PubMedCrossRefGoogle Scholar
  16. 16.
    Witte W, Cuny C, Klare I, Nübel U, Strommenger B, Werner G (2008) Emergence and spread of antibiotic-resistant gram-positive bacterial pathogens. Int J Med Microbiol 298:365–377PubMedCrossRefGoogle Scholar
  17. 17.
    Abajy MY, Kopeć J, Schiwon K, Burzynski M, Döring M, Bohn C, Grohmann E (2007) A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 189:2487–2496PubMedCrossRefGoogle Scholar
  18. 18.
    Li CS, Lin YC (2001) Storage effects on bacterial concentration: determination of impinger and filter samples. Sci Total Environ 278:231–237PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarz FV, Perreten V, Teuber M (2001) Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 46:170–187PubMedCrossRefGoogle Scholar
  20. 20.
    Caryl JA, O’Neill AJ (2009) Complete nucleotide sequence of pGO1, the prototype conjugative plasmid from the staphylococci. Plasmid 62:35–38PubMedCrossRefGoogle Scholar
  21. 21.
    Firth N, Skurray RA (2006) Genetics: accessory elements and genetic exchange. In: Fischetti VA, Novick RP, Ferretti JJ (eds) Gram-positive pathogens, 2nd edn. ASM Press, Washington, DC, pp 413–426Google Scholar
  22. 22.
    Perez-Roth E, Kwong SM, Alcoba-Florez J, Firth N, Mendez-Alvarez S (2010) Complete nucleotide sequence and comparative analysis of pPR9, a 41.7-Kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance. Antimicrob Agents Chemother 54:2252–2257PubMedCrossRefGoogle Scholar
  23. 23.
    Woodford N, Morrison D, Cookson B, George RC (1993) Comparison of high-level gentamicin-resistant Enterococcus faecium isolates from different continents. Antimicrob Agents Chemother 37:681–684PubMedCrossRefGoogle Scholar
  24. 24.
    Werner G, Klare I, Witte W (1999) Large conjugative vanA plasmids in vancomycin-resistant Enterococcus faecium. J Clin Microbiol 37:2383–2384PubMedGoogle Scholar
  25. 25.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedCrossRefGoogle Scholar
  26. 26.
    Sambrook J, Russel DW (2001) Preparation of plasmid DNA by alkaline lysis with SDS. In: Irwin N (ed) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 31–34Google Scholar
  27. 27.
    Barton BM, Harding GP, Zuccarelli AJ (1995) A general method for detecting and sizing large plasmids. Anal Biochem 226:235–240PubMedCrossRefGoogle Scholar
  28. 28.
    Freitas AR, Tedim AP, Novais C, Ruiz-Garbajosa P, Werner G, Laverde-Gomez JA, Canton R, Peixe L, Baquero F, Coque TM (2010) Global spread of the colonization-virulence hyl Efm gene in megaplasmids of CC17 Enterococcus faecium polyclonal sub-cluster. Antimicrob Agents Chemother 54:2660–2665PubMedCrossRefGoogle Scholar
  29. 29.
    Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C, de la Cruz F (2004) A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28:79–100PubMedCrossRefGoogle Scholar
  30. 30.
    Garcillán-Barcia MP, Francia MV, de La Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687PubMedCrossRefGoogle Scholar
  31. 31.
    Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452PubMedCrossRefGoogle Scholar
  32. 32.
    Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402PubMedCrossRefGoogle Scholar
  33. 33.
    Christensen GD, Simpson A, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006PubMedGoogle Scholar
  34. 34.
    Klingenberg C, Aarag E, Rønnestad A, Sollid JE, Abrahamsen TG, Kjeldsen G, Flægstad T (2005) Coagulase-negative staphylococcal sepsis in neonates: association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr Infect Dis J 24:817–822PubMedCrossRefGoogle Scholar
  35. 35.
    Camilli R, Pantosti A, Baldassarri L (2011) Contribution of serotype and genetic background to biofilm formation by Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis 30:97–102PubMedCrossRefGoogle Scholar
  36. 36.
    Di Rosa R, Creti R, Venditti M, D'Amelio R, Arciola CR, Montanaro L, Baldassarri L (2006) Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol Lett 256:145–150PubMedCrossRefGoogle Scholar
  37. 37.
    Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958PubMedCrossRefGoogle Scholar
  38. 38.
    Ong CY, Beatson SA, McEwan AG, Schembri MA (2009) Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl Environ Microbiol 75:6783–6791PubMedCrossRefGoogle Scholar
  39. 39.
    Timmery S, Hu X, Mahillon J (2011) Characterization of bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. Astrobiology 11:323–334PubMedCrossRefGoogle Scholar
  40. 40.
    Chi MC, Li CS (2006) Analysis of bioaerosols from chicken houses by culture and non-culture method. Aerosol Sci Technol 40:1071–1079CrossRefGoogle Scholar
  41. 41.
    Yao M, Mainelis G (2007) Analysis of portable impactor performance for enumeration of viable bioaerosols. J Occup Environ Hyg 4:514–524PubMedCrossRefGoogle Scholar
  42. 42.
    Novikova ND (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbial Ecol 47:127–132CrossRefGoogle Scholar
  43. 43.
    Bonetta S, Bonetta S, Mosso S, Sampò S, Carraro E (2010) Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system. Environ Monit Assess 161:473–483PubMedCrossRefGoogle Scholar
  44. 44.
    Dybwad M, Granum PE, Bruheim P, Blatny JM (2012) Characterization of airborne bacteria at an underground subway station. Appl Environ Microbiol 78:1917–1929PubMedCrossRefGoogle Scholar
  45. 45.
    Malachowa N, DeLeo F (2010) Mobile genetic elements of Staphylococcus aureus. Cellular and Molecular Life Sciences 67:3057-3071Google Scholar
  46. 46.
    Otto M (2010) Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol 5:183–195PubMedCrossRefGoogle Scholar
  47. 47.
    Piette A, Verschraegen G (2009) Role of coagulase-negative staphylococci in human disease. Vet Microbiol 134:45–54PubMedCrossRefGoogle Scholar
  48. 48.
    Solheim M, Brekke M, Snipen L, Willems R, Nes I, Brede D (2011) Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol 11:3–14PubMedCrossRefGoogle Scholar
  49. 49.
    Kleine B, Gatermann S, Sakinc T (2010) Genotypic and phenotypic variation among Staphylococcus saprophyticus from human and animal isolates. BMC Res Notes 3:163–167PubMedCrossRefGoogle Scholar
  50. 50.
    Frank KL, del Pozo JL, Patel R (2008) From clinical microbiology to infection pathogenesis: How daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 21:111–133PubMedCrossRefGoogle Scholar
  51. 51.
    Aponte VM, Finch DS, Klaus DM (2006) Considerations for non-invasive in-flight monitoring of astronaut immune status with potential use of MEMS and NEMS devices. Life Sci 79:1317–1333PubMedCrossRefGoogle Scholar
  52. 52.
    Crucian B, Lee P, Stowe R, Jones J, Effenhauser R, Widen R, Sams C (2007) Immune system changes during simulated planetary exploration on Devon Island, high Arctic. BMC Immunol 8:7–19PubMedCrossRefGoogle Scholar
  53. 53.
    Rykova MP, Antropova EN, Larina IM, Morukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astro 63:697–705CrossRefGoogle Scholar
  54. 54.
    Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K (2011) Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci. Ann N Y Acad Sci 1241:82–103PubMedCrossRefGoogle Scholar
  55. 55.
    Zmantar T, Kouidhi B, Miladi H, Bakhrouf A (2011) Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes 4:453–461PubMedCrossRefGoogle Scholar
  56. 56.
    Gryczan T, Israeli-Reches M, Del Bue M, Dubnau D (1984) DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. Mol Gen Genet 194:349–356PubMedCrossRefGoogle Scholar
  57. 57.
    Monod M, Mohan S, Dubnau D (1987) Cloning and analysis of ermG, a new macrolide-lincosamide-streptogramin B resistance element from Bacillus sphaericus. J Bacteriol 169:340–350PubMedGoogle Scholar
  58. 58.
    Van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203–228PubMedGoogle Scholar
  59. 59.
    Roberts MC (2008) Update on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159PubMedCrossRefGoogle Scholar
  60. 60.
    Wang Y, Wang G, Shoemaker NB, Whitehead TR, Salyers AA (2005) Distribution of the ermG gene among bacterial isolates from porcine intestinal contents. Appl Environ Microbiol 71:4930–4934PubMedCrossRefGoogle Scholar
  61. 61.
    Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301PubMedCrossRefGoogle Scholar
  62. 62.
    Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 367:731–739PubMedCrossRefGoogle Scholar
  63. 63.
    Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260PubMedCrossRefGoogle Scholar
  64. 64.
    Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830PubMedGoogle Scholar
  65. 65.
    Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, Anderson KF, McDougal LK, Hageman JC, Olsen-Rasmussen M, Frace M, Alangaden GJ, Chenoweth C, Zervos MJ, Robinson-Dunn B, Schreckenberger PC, Reller LB, Rudrik JT, Patel JB (2010) Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:4314–4320PubMedCrossRefGoogle Scholar
  66. 66.
    De Boever P, Mergeay M, Ilyin V, Forget-Hanus D, van der Auwera G, Mahillon J (2007) Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. Microgravity Sci Technol 19:138–144CrossRefGoogle Scholar
  67. 67.
    Beuls E, Van Houdt R, Leys N, Dijkstra C, Larkin O, Mahillon J (2009) Bacillus thuringiensis conjugation in simulated microgravity. Astrobiol 9:797–805CrossRefGoogle Scholar
  68. 68.
    Storrs-Mabilat M (2001) Study of a microbial detection system for space applications. Second Workshop on Advanced Life Support, Noordwijk, The NetherlandsGoogle Scholar
  69. 69.
    Wilson JW, Ott CM, Zu Bentrup KH, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104:16299–16304PubMedCrossRefGoogle Scholar
  70. 70.
    Smith MS, Yang RK, Knapp CW, Niu Y, Peak N, Hanfelt MM, Galland JC, Graham DW (2004) Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl Environ Microbiol 70:7372–7377PubMedCrossRefGoogle Scholar
  71. 71.
    Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J (2005) Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol 43:2291–2302PubMedCrossRefGoogle Scholar
  72. 72.
    Tomich PK, An FY, Damle SP, Clewell DB (1979) Plasmid-related transmissibility and multiple drug resistance in Streptococcus faecalis subsp. zymogenes strain DS16. Antimicrob Agents Chemother 15:828–830PubMedCrossRefGoogle Scholar
  73. 73.
    Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074PubMedCrossRefGoogle Scholar
  74. 74.
    Jacob AE, Hobbs SJ (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in S. faecalis var. zymogenes. J Bacteriol 117:360–372PubMedGoogle Scholar
  75. 75.
    Evans RP Jr, Macrina FL (1983) Streptococcal R plasmid pIP501: endonuclease site map, resistance determinant location, and construction of novel derivatives. J Bacteriol 154:1347–1355PubMedGoogle Scholar
  76. 76.
    Ike Y, Craig RA, White BA, Yagi Y, Clewell DB (1983) Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci USA 80:5369–5373PubMedCrossRefGoogle Scholar
  77. 77.
    Garcia-Migura L, Hasman H, Jensen L (2009) Presence of pRI1: a small cryptic mobilizable plasmid isolated from Enterococcus faecium of human and animal origin. Curr Microbiol 58:95–100PubMedCrossRefGoogle Scholar
  78. 78.
    Khan SA, Carleton SM, Novick RP (1981) Replication of plasmid pT181 DNA in vitro: requirement for a plasmid-encoded product. Proc Natl Acad Sci USA 78:4902–4906PubMedCrossRefGoogle Scholar
  79. 79.
    Firth N, Ridgway KP, Byrne ME, Fink PD, Johnson L, Paulsen IT, Skurray RA (1993) Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene 136:13–25PubMedCrossRefGoogle Scholar
  80. 80.
    Horinouchi S, Weisblum B (1982) Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825PubMedGoogle Scholar
  81. 81.
    Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 47:1423–1426Google Scholar
  82. 82.
    Böckelmann U, Dorries H, Ayuso-Gabella MN, de Salgot Marcay M, Tandoi V, Levantesi C, Masciopinto C, van Houtte E, Szewzyk U, Wintgens T, Grohmann E (2009) Quantitative PCR monitoring of antibiotic resistance genes and bacterial pathogens in three European artificial groundwater recharge systems. Appl Environ Microbiol 75:154–163PubMedCrossRefGoogle Scholar
  83. 83.
    Tenover FC, Rasheed JK (2004) Detection of antimicrobial resistance genes and mutations associated with antimicrobial resistance in microorganisms. In: Persing DH, Tenover FG, Versalovic J, Tang YUER, Relman WTJ (eds) Molecular microbiology: diagnostics principles and practice, vol 1. ASM Press, Washington DC, pp 391–406Google Scholar
  84. 84.
    Miele A, Bandera M, Goldstein BP (1995) Use of primers selective for vancomycin resistance genes to determine van genotype in enterococci and to study gene organization in VanA isolates. Antimicrob Agents Chemother 39:1772–1778PubMedCrossRefGoogle Scholar
  85. 85.
    Depardieu F, Perichon B, Courvalin P (2004) Detection of the van Alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J Clin Microbiol 42:5857–5860PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Katarzyna Schiwon
    • 1
  • Karsten Arends
    • 1
    • 5
  • Katja Marie Rogowski
    • 1
  • Svea Fürch
    • 1
  • Katrin Prescha
    • 1
  • Türkan Sakinc
    • 2
  • Rob Van Houdt
    • 3
  • Guido Werner
    • 4
  • Elisabeth Grohmann
    • 1
    • 2
  1. 1.Department of Environmental Microbiology/GeneticsTechnical UniversityBerlinGermany
  2. 2.Division of Infectious DiseasesUniversity Medical Centre FreiburgFreiburgGermany
  3. 3.Unit of MicrobiologyBelgian Nuclear Research Centre (SCK•CEN)MolBelgium
  4. 4.Natl. Reference Centre for Staphylococci and Enterococci, Division FG 13 Nosocomial InfectionsRobert Koch InstituteWernigerodeGermany
  5. 5.Robert Koch-InstituteBerlinGermany

Personalised recommendations