Microbial Ecology

, Volume 65, Issue 3, pp 626–637 | Cite as

Novel Microbial Populations in Deep Granitic Groundwater from Grimsel Test Site, Switzerland

  • Uta KonnoEmail author
  • Mariko Kouduka
  • Daisuke D. Komatsu
  • Kousuke Ishii
  • Akari Fukuda
  • Urumu Tsunogai
  • Kazumasa Ito
  • Yohey Suzuki
Environmental Microbiology


Freshwater aquifers in granitic rocks are widespread microbial habitats in the terrestrial subsurface. Microbial populations in deep granitic groundwater from two recently drilled (1 and 2 years) and two old boreholes (14 and 25 years) were compared. The 16S rRNA gene sequences related to “Candidatus Magnetobacterium bavaricum”, Thermodesulfovibrio spp. of Nitrospirae (90.5–93.1 % similarity) and a novel candidate division with <90 % similarity to known cultivated species were dominant in all boreholes. Most of the environmental clones closely related to the novel lineages in Nitrospirae, which have been detected exclusively in deep groundwater samples. In contrast, betaproteobacterial sequences related to the family Rhodocyclaceae were obtained only from the recently drilled boreholes, which had higher total cell numbers. Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis supported the result from clone library analysis; betaproteobacterial cells were dominantly detected in recently drilled boreholes. These results suggest that while indigenous microbial populations represented by the novel phylotypes persisted in the boreholes for 25 years, betaproteobacterial species disappeared after 2 years owing to the change of substrate availability.


Groundwater Sample Carbon Isotopic Composition Sulfur Isotopic Composition Candidate Division Microbial Sulfate Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Rueedi, Dr. Martin, Dr. Blechschmidt, and Mr. Brand (Nagra) for coordination of our sampling. We are grateful to Mr. Tonooka Mrs. Shuin, and Mrs. Nakamura for their technical assistance with geochemical and microbial analysis. This study was supported by grants from the Nuclear and Industrial Safety Agency (NISA).

Supplementary material

248_2013_184_MOESM1_ESM.docx (80 kb)
ESM 1 (DOCX 80 kb)


  1. 1.
    Alonso EE, Alcoverro J, Coste F, Malinsky L, Merrien-Soukatchoff V, Kadiri I, Nowak T, Shao H, Nguyen TS, Selvadurai APS, Armand G, Sobolik SR, Itamura M, Stone CM, Webb SW, Rejeb A, Tijani M, Maouche Z, Kobayashi A, Kurikami H, Ito A, Sugita Y, Chijimatsu M, Börgesson L, Hernelind J, Rutqvist J, Tsnag C-F, Jussila P (2005) The FEBEX benchmark test: case definition and comparison of modeling approaches. Int J Rock Mech Min Sci 42:611–638CrossRefGoogle Scholar
  2. 2.
    Balkwill DL, Reeves RH, Drake GR, Reeves JY, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216PubMedCrossRefGoogle Scholar
  3. 3.
    Brockman FJ, Kieft TL, Fredrickson JK, Bjornstad BN, Li SMW, Spangenburg W, Long PE (1992) Microbiology of vadose zone paleosols in south-central Washingtone-state. Microb Ecol 23:279–301CrossRefGoogle Scholar
  4. 4.
    Canfield DE (2001) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim Cosmochim Acta 65:115–125CrossRefGoogle Scholar
  5. 5.
    Colwell FS, Stormberg GJ, Phelps TJ, Birnbaum SA, McKinley J, Rawson SA, Veverka C, Goodwin S, Long PE, Russell BF, Garland T, Thompson D, Skinner P, Grover S (1992) Innovative techniques for collection of saturated and unsaturated subsurface basalts and sediments for microbiological characterization. J Microbiol Methods 15:279–292CrossRefGoogle Scholar
  6. 6.
    Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444PubMedCrossRefGoogle Scholar
  7. 7.
    Degueldre C, Pfeiffer HR, Alexander W, Wernli B, Bruetsch R (1996) Colloid properties in granitic groundwater systems.1. Sampling and characterisation. Appl Geochem 11:677–695CrossRefGoogle Scholar
  8. 8.
    Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689PubMedCrossRefGoogle Scholar
  9. 9.
    Dyrssen D, Sillén LG (1967) Alkalinity and total carbonate in sea water. A plea for p-T independent data. Tellus 19:113–121CrossRefGoogle Scholar
  10. 10.
    Edmonds JW, Weston NB, Joye SB, Mou X, Moran MA (2009) Microbial community response to seawater amendment in low-salinity tidal sediments. Microb Ecol 58:558–568PubMedCrossRefGoogle Scholar
  11. 11.
    Fukuda A, Hagiwara H, Ishimura T, Kouduka M, Ioka S, Amano Y, Tsunogai U, Suzuki Y, Mizuno T (2010) Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research Laboratory (MIU), Central Japan. Microb Ecol 60:214–225PubMedCrossRefGoogle Scholar
  12. 12.
    Fredrickson JK, Balkwill DL (2006) Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J 23:345–356CrossRefGoogle Scholar
  13. 13.
    Hallbeck L, Pedersen K (2008) Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl Geochem 23:1796–1819CrossRefGoogle Scholar
  14. 14.
    Haveman SA, Pedersen K (2002) Distribution of culturable microorganisms in Fennoscandian Shield groundwater. FEMS Microbiol Ecol 39:129–137PubMedCrossRefGoogle Scholar
  15. 15.
    Ijiri A, Tsunogai U, Gamo T (2003) A simple method for oxygen-18 determination of milligram quantities of water using NaHCO3 reagent. Rapid Commun Mass Spectrom 17:1472–1478PubMedCrossRefGoogle Scholar
  16. 16.
    Iwatsuki T, Xu S, Mizutani Y, Hama K, Saegusa H, Nakano K (2001) Carbon-14 study of groundwater in the sedimentary rocks at the Tono study site, central Japan. Appl Geochem 16:849–859CrossRefGoogle Scholar
  17. 17.
    Jain DK, Stores-Gascoyne S, Providenti M, Tanner C, Cord I (1997) Characterization of microbial communities in deep groundwater form granitic rock. Can J Microbiol 43:272–283CrossRefGoogle Scholar
  18. 18.
    Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56:2517–2522PubMedCrossRefGoogle Scholar
  19. 19.
    Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulfur isotopes. J Gen Microbiol 34:195–212PubMedGoogle Scholar
  20. 20.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  21. 21.
    Lieb RW (1989) Presentation of the Grimsel Test Site. Nucl Eng Des 116:7–9CrossRefGoogle Scholar
  22. 22.
    Lin LH, Hall J, Onstott TC, Gihring T, Sharwood Lollar B, Boice E, Pratt L, Lippman-Pipke J, Bellamy RES (2006) Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiol J 23:475–497CrossRefGoogle Scholar
  23. 23.
    Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482PubMedCrossRefGoogle Scholar
  24. 24.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  25. 25.
    Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria—problems and solutions. Syst Appl Microbiol 15:593–600CrossRefGoogle Scholar
  26. 26.
    Miyoshi T, Iwatsuki T, Naganuma T (2005) Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 71:1084–1088PubMedCrossRefGoogle Scholar
  27. 27.
    Murakami Y, Fujita Y, Iwatsuki T, Naganuma T (2002) Abundance and viability of subsurface microbial communities in sedimentary and igneous rock aquifers. Microbes Environ 17:63–74CrossRefGoogle Scholar
  28. 28.
    Onstott TC, Moser DP, Pfiffner SM, Fredrickson JK, Brockman FJ, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson R (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191PubMedCrossRefGoogle Scholar
  29. 29.
    Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101PubMedCrossRefGoogle Scholar
  30. 30.
    Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414CrossRefGoogle Scholar
  31. 31.
    Pedersen K, Arlinger J, Ekendahl S, Hallbeck L (1996) 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol Ecol 19:249–262Google Scholar
  32. 32.
    Pedersen K, Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of Southeastern Sweden. Microb Ecol 29:37–52CrossRefGoogle Scholar
  33. 33.
    Pedersen K, Hallbeck L, Arlinger J, Erlandson AC, Jahromi N (1997) Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods. J Microbiol Methods 30:179–192CrossRefGoogle Scholar
  34. 34.
    Pedersen K, Arlinger J, Eriksson S, Hallbeck A, Hallbeck L, Johansson J (2008) Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland. ISME J 2:760–775PubMedCrossRefGoogle Scholar
  35. 35.
    Richardson SM, McSween HY Jr (1989) Geochemistry: pathways and processes. Prentice Hall, New JerseyGoogle Scholar
  36. 36.
    Sahl JW, Schmidt RH, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152PubMedCrossRefGoogle Scholar
  37. 37.
    Sclater JG, Jaupart C, Galson D (1980) The heat-flow through oceanic and continental-crust and the heat-loss of the Earth. Rev Geophys 18:269–311CrossRefGoogle Scholar
  38. 38.
    Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935PubMedCrossRefGoogle Scholar
  39. 39.
    Stroes-Gascoyne S, Hamonet CJ, Audette-Stuart M, Beaton D, King-Sharp K, Festarini A, Serran M, McMullin D, Kramer- Tremblay S, Rose S, Bellan L (2011) Microbial characterization of groundwater from boreholes CR9 and CR18 at CRL(2007–2009)—Implications for a possible future repository for radioactive non-fuel waste. In: Proceedings of CNS Conference on Waste Management, Decommissioning and Restoration for Canada’s Nuclear Activities, September 11–14, Toronto, ON, CanadaGoogle Scholar
  40. 40.
    Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954PubMedCrossRefGoogle Scholar
  41. 41.
    Tsunogai U, Yoshida N, Ishibashi J, Gamo T (2000) Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochim Cosmochim Acta 64:2439–2452CrossRefGoogle Scholar
  42. 42.
    Wen AM, Fegan M, Hayward C, Chakraborty S, Sly LI (1999) Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49:567–576PubMedCrossRefGoogle Scholar
  43. 43.
    Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  44. 44.
    Wolterink A, Kim S, Muusse M, Kim IS, Roholl PJM, van Ginkel CG, Stams AJM, Kengen SWM (2005) Dechloromonas hortensis sp. nov. and strain ASK-1, two novel (per)chlorate-reducing bacteria, and taxonomic description of strain GR-1. Int J Syst Evol Microbiol 55:2063–2068PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Uta Konno
    • 1
    Email author
  • Mariko Kouduka
    • 1
  • Daisuke D. Komatsu
    • 2
  • Kousuke Ishii
    • 3
  • Akari Fukuda
    • 4
  • Urumu Tsunogai
    • 2
  • Kazumasa Ito
    • 1
  • Yohey Suzuki
    • 1
  1. 1.Institute for Geo-Resources and EnvironmentNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan
  2. 2.Earth and Planetary System Science, Faculty of ScienceHokkaido UniversitySapporoJapan
  3. 3.Chemical Engineering DepartmentIHI CorporationYokohamaJapan
  4. 4.Japan Atomic Energy AgencyMizunamiJapan

Personalised recommendations