Advertisement

Microbial Ecology

, Volume 66, Issue 2, pp 297–311 | Cite as

Molecular Ecology Techniques Reveal Both Spatial and Temporal Variations in the Diversity of Archaeal Communities within the Athalassohaline Environment of Rambla Salada, Spain

  • Nahid Oueriaghli
  • Victoria Béjar
  • Emilia Quesada
  • Fernando Martínez-Checa
Environmental Microbiology

Abstract

We have studied the distribution of the archaeal communities in Rambla Salada (Murcia, Spain) over three different seasons and observed the influence upon them of the environmental variables, salinity, pH, oxygen and temperature. Samples were collected from three representative sites in order to gain an insight into the archaeal population of the rambla as a whole. Denaturing gradient gel electrophoresis patterns and diversity indexes indicate that the diversity of the archaeal community in Rambla Salada changed mainly according to the season. We found no significant differences between the types of sample studied: watery sediments and soils. The upwelling zone showed most diversity in its archaeal community. The overall archaeal community was composed mainly of Halobacteriales and Thermoplasmatales, accounting for 72.6 and 12.1 % of the total, respectively. Haloarcula was the most abundant genus, being present at all three sites during all three seasons. Some few Crenarchaeota were always found, mainly at low-salinity levels. Ordination canonical correspondence analysis demonstrated that salinity affected the structure of the community significantly, whilst pH, oxygen and temperature did so to a lesser extent. Most Halobacteriales correlated positively with salinity and pH, whilst Thermoplasmatales correlated negatively with both salinity and pH and positively with temperature and oxygen. The archaeal community with the highest diversity was sampled during June 2006, the season with the highest salt concentration. Catalyzed reporter deposition-fluorescence in situ hybridization showed that the percentage of archaea in Rambla Salada compared to the total number of microorganisms (as measured by DAPI) ranged from 11.1 to 16.7 %. Our research group had isolated the most abundant taxon, Haloarcula, previously in Rambla Salada using classical culture techniques, but on this occasion, using culture-independent methods, we were also able to identify some phylotypes, Halorubrum, Methanolobus, Natronomonas, Halomicrobium, Halobacterium, Halosimplex, uncultured Thermoplasmatales and uncultured Crenarchaeota, that had remained undetected during our earlier studies in this habitat.

Keywords

Archaea Archaeal Community Halobacterium Upwelling Zone Cumulative Percentage Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by grants from the Dirreción General de Investigación Científica y Técnica (CGL 2008–02399; BIO2011-12879E) and from the Plan Andaluz de Invesigación (CVI06226), Spain. The authors are very grateful to Kadiya Calderón (UGR) for her valuable assistance with the statistical analyses. We thank the “Centro de Instrumentación Científica” of the University of Granada for their microscopy (CLSM) service. We also thank David Porcel for his suggestions about the instructions concerning the microscopy (CLSM). Special thanks go to our colleague Dr. J. Trout for revising and editing our English text.

References

  1. 1.
    Ventosa A (2004) Halophilic microorganisms. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  3. 3.
    Ventosa A, Logan NA, Lappin-Scott HM, Oyston PCF (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Prokaryotic diversity mechanism and significance. Cambridge University Press, London, pp 223–254CrossRefGoogle Scholar
  4. 4.
    Ventosa A, Mellado E, Sanchez-Porrro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 87–115CrossRefGoogle Scholar
  5. 5.
    Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923PubMedCrossRefGoogle Scholar
  6. 6.
    Euzéby JP (2012) List of prokaryotic names with standing in nomenclature. http://www.bacterio.cict.fr. Accessed Sept 2012
  7. 7.
    Oren A (2003) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7CrossRefGoogle Scholar
  8. 8.
    Oren A (2007) Biodiversity in highly saline environments. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 223–231Google Scholar
  9. 9.
    Muyzer G, De Waal EC (1994) Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rDNA. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, Heidelberg, pp 207–214CrossRefGoogle Scholar
  10. 10.
    Muyzer G, Hottentra-Ger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 1–23Google Scholar
  11. 11.
    Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309PubMedCrossRefGoogle Scholar
  12. 12.
    Amann R, Bernhard M (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Microbiol 6:339–348CrossRefGoogle Scholar
  13. 13.
    Demergasso C, Escudero L, Casamayor EO, Chong G, Balague V, Perdrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504PubMedCrossRefGoogle Scholar
  14. 14.
    Wu QL, Zwart G, Schauer M, Kamst-van Agterveled MP, Hahn HV (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol 72:5478–5485PubMedCrossRefGoogle Scholar
  15. 15.
    Humayun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042CrossRefGoogle Scholar
  16. 16.
    Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617PubMedCrossRefGoogle Scholar
  17. 17.
    Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267Google Scholar
  18. 18.
    Muller DW, Hsü KJ (1987) Event stratigraphy and paleoceanography in the Fortuna basin (Southeast Spain): a scenario for the Messinian salinity crisis. Paleoceanogr 2:679–696CrossRefGoogle Scholar
  19. 19.
    Ramírez-Díaz L, Vidal-Abarca MR, Calvo JF, Suarez ML, Palazón JA, Esteve MA, Gómez R, Jimenez A, Pujol JA, Sánchez JA, Pardo M, Contreras J (1995) Bases ecológicas para la delimitación, ordenación y gestión del Paisaje Protegido de las Ramblas de Ajauque y Salada Vol I & II. Consejería de Medio Ambiente, Comunidad Autónoma de la Región de Murcia, SpainGoogle Scholar
  20. 20.
    Martínez-Cánovas MJ, Béjar V, Martínez-Checa F, Páez R, Quesada E (2004) Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain. Int J Syst Evol Microbiol 54:1793–1797PubMedCrossRefGoogle Scholar
  21. 21.
    González-Domenech CM, Martínez-Checa F, Quesada E, Béjar V (2008) Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 58:803–809PubMedCrossRefGoogle Scholar
  22. 22.
    Luque R, Béjar V, Quesada E, Martínez-Checa F, Llamas I (2012) Halomonas ramblicola sp. nov., a moderately halophilic bacterium from Rambla Salada, a Mediterranean hypersaline rambla in south-east Spain. Int J Syst Evol Microbiol 13. doi: 10.1099/ijs.0.039453-0
  23. 23.
    Luque R, Gonzalez-Domenech CM, Llamas I, Quesada E, Béjar V (2012) Diversity of culturable halophilic archaea isolated from Rambla Salada, Murcia (Spain). Extremophiles 16:205–213PubMedCrossRefGoogle Scholar
  24. 24.
    Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microbiol 60:1241–1248PubMedGoogle Scholar
  25. 25.
    Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt, Goodfellow M (eds) Nucleic acid techniques. Bacterial systematic. Wiley, Chichester, pp 205–248Google Scholar
  26. 26.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  27. 27.
    Janse I, Bok J, Zwart G (2004) A simple remedy against artificial double bands in denaturing gradient gel electrophoresis. J Microb Methods 57:279–281CrossRefGoogle Scholar
  28. 28.
    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  29. 29.
    Thompson JD, Gibson TJ, Plewniak K, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  30. 30.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  31. 31.
    Felsenstein J (2008) Phylogenies Inference Package (PHYLIP) version 3.69. Department of Genome Sciences and Department of Biology, University of Washington, SeattleGoogle Scholar
  32. 32.
    Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:33–40CrossRefGoogle Scholar
  33. 33.
    Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  34. 34.
    Magurran AE (1996) Ecological diversity and its measurement. Chapman and Hall, LondonGoogle Scholar
  35. 35.
    Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints, practical tools for microbial ecology. Environ Microbiol 10:1571–1581PubMedCrossRefGoogle Scholar
  36. 36.
    Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  37. 37.
    Salles JF, Van Veen JA, Van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020PubMedCrossRefGoogle Scholar
  38. 38.
    Sapp M, Wichels A, Wiltshire K, Gerdts G (2007) Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol Ecol 59:622–637PubMedCrossRefGoogle Scholar
  39. 39.
    Pernthaler A, Pernthaler J, Amann R (2004) Sensitive multi-colour fluorescence in situ hybridization for the identification of environmental microorganisms. Mol Microb Ecol 3:711–726Google Scholar
  40. 40.
    Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedGoogle Scholar
  41. 41.
    Rhasband W (2010) The ImageJ (Image processing and Analysis in Java) version 1.43u. National Institutes of Health, Bethesda, http://rsb.info.nih.gov/ij/ Google Scholar
  42. 42.
    Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river-floodplain system (Dnube, Austria). Appl Environ Microbiol 71:609–620PubMedCrossRefGoogle Scholar
  43. 43.
    Neufeled JD, Mohn WW (2006) Assessment of microbial phylogenetic diversity based on environmental nucleic acid. In: Stackebrandt E (ed) Molecular identification systematic and population structure of prokaryotes. Springer, Berlin, pp 220–259Google Scholar
  44. 44.
    Auguet JC, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190PubMedCrossRefGoogle Scholar
  45. 45.
    Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440PubMedCrossRefGoogle Scholar
  46. 46.
    Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A (2010) Environmental distribution of prokaryotic taxa. BMC Microbiol 10:85PubMedCrossRefGoogle Scholar
  47. 47.
    Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322PubMedCrossRefGoogle Scholar
  48. 48.
    Oren A (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7PubMedCrossRefGoogle Scholar
  49. 49.
    Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedCrossRefGoogle Scholar
  50. 50.
    Bidle K, Amadio W, Oliveira P, Paulish T, Hicks S, Earnest C (2005) A phylogenetic analysis of haloarchaea found in a solar saltern. Bios 76:89–96CrossRefGoogle Scholar
  51. 51.
    Pasic L, Ulrih NP, Črnigoj M, Grabnar M, Velikonja BH (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18PubMedCrossRefGoogle Scholar
  52. 52.
    Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka: an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang H, Dong H, Deng S, Yu B, Huang Q, Wu Q (2009) Response of archaeal community structure to environmental changes in Lakes on the Tibetan Plateau, Northwestern China. Geomicrobiol J 26:289–297CrossRefGoogle Scholar
  54. 54.
    Dong H, Zhang G, Jiang H, Yu B, Leah RC, Courtney RL, Fields MW (2006) Microbial diversity in sediment of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microbiol Ecol 51:65–82CrossRefGoogle Scholar
  55. 55.
    Jiang H, Dong H, Yu B, Li Y, Ji S, Liu X, Zhang C (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan Plateau. Environ Microbiol 9:2603–2621PubMedCrossRefGoogle Scholar
  56. 56.
    Liu M, Xiao T, Wu Y, Zhou F, Zhang W (2011) Temporal distribution of the archaeal community in the Changjiang Estuary hypoxia area and the adjacent east China Sea as determined by denaturing gradient gel electrophoresis and multivariate analysis. Can J Microbiol 57:504–513PubMedCrossRefGoogle Scholar
  57. 57.
    Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595PubMedCrossRefGoogle Scholar
  58. 58.
    Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004) Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239PubMedCrossRefGoogle Scholar
  59. 59.
    Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666PubMedCrossRefGoogle Scholar
  60. 60.
    Anton J, Llobet-Brossa E, Rodriguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523PubMedCrossRefGoogle Scholar
  61. 61.
    Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2010) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 141:161–169CrossRefGoogle Scholar
  62. 62.
    Benlloch S, Lopez-Lopez A, Casamayor EO, Ovreas L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodriguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  63. 63.
    Ochsenreiter, Pfeifer F, Schleper C (2002) Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274PubMedCrossRefGoogle Scholar
  64. 64.
    Kadam PC, Ranade DR, Mandelco L, Boone DR (1994) Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 44:603–607CrossRefGoogle Scholar
  65. 65.
    Liu Y, Boone DR, Choy C (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40:111–116CrossRefGoogle Scholar
  66. 66.
    Boone DR (2001) Genus V. Methanolobus Konig and Stetter 1983, 439vp. The Archaea and the deeply branching and phototrophic Bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 283–287Google Scholar
  67. 67.
    Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38:122–123CrossRefGoogle Scholar
  68. 68.
    Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatus, n. gen., n. sp. The extremely halophilic methanogenic Archaebacterium. Dokl Akad Nauk SSSR 293:464–468Google Scholar
  69. 69.
    Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. Nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142PubMedCrossRefGoogle Scholar
  70. 70.
    Boone DR, Baker CC (2001) Genus VI Methanosalsum gen. nov. The Archaea and the deeply branching and phototrophic Bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 287–289CrossRefGoogle Scholar
  71. 71.
    Jones WJ, Paynter MJB, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRefGoogle Scholar
  72. 72.
    Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276PubMedCrossRefGoogle Scholar
  73. 73.
    Casamayor EO, Schafer H, Baeras L, Pedrós-Alió C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508PubMedCrossRefGoogle Scholar
  74. 74.
    Jiang H, Dong H, Yu B, Ye Q, Shen J, Rowe H, Zhang C (2008) Dominance of putative marine benthic archaea in Qinghai Lake, northwestern China. Environ Microbiol 10:2355–2367PubMedCrossRefGoogle Scholar
  75. 75.
    Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Andersen D, Greer CW, Pollard W, Whyte LG (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. Int J Syst Evol Microbiol 4:1326–1339Google Scholar
  76. 76.
    Tindall BJ et al (2009) Complete genome sequence of Halomicrobium mukohataei type strain (arg-2T). Stand Genomic Sci 1:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nahid Oueriaghli
    • 1
    • 2
  • Victoria Béjar
    • 1
    • 2
    • 3
  • Emilia Quesada
    • 1
    • 2
  • Fernando Martínez-Checa
    • 1
    • 2
  1. 1.Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
  2. 2.Institute of BiotechnologyUniversity of GranadaGranadaSpain
  3. 3.Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain

Personalised recommendations