Microbial Ecology

, Volume 65, Issue 4, pp 826–851 | Cite as

Fitness Factors in Vibrios: a Mini-review

  • Crystal N. JohnsonEmail author


Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.


Chitin Vibrio GlcNac Hemocyte Immune Evasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research and preparation for this mini-review were supported by NSF grant # EF-1003943 as part of the joint NSF-NIH Ecology of Infectious Diseases program.


  1. 1.
    Aeckersberg F, Lupp C, Feliciano B, Ruby EG (2001) Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J Bacteriol 183:6590–6597PubMedCrossRefGoogle Scholar
  2. 2.
    Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543PubMedCrossRefGoogle Scholar
  3. 3.
    Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, Sack RB, Sack DA, Ahmed KU, Sadique A, Watanabe H, Grim CJ, Huq A, Colwell RR (2007) Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A 104:17801–17806PubMedCrossRefGoogle Scholar
  4. 4.
    Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456PubMedCrossRefGoogle Scholar
  5. 5.
    Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci 3:401–425PubMedCrossRefGoogle Scholar
  6. 6.
    Asplund ME, Rehnstam-Holm A-S, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A (2011) Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 13:2738–2751PubMedCrossRefGoogle Scholar
  7. 7.
    Austin B (2010) Vibrios as causal agents of zoonoses. Vet Microbiol 140:310–317PubMedCrossRefGoogle Scholar
  8. 8.
    Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168PubMedCrossRefGoogle Scholar
  9. 9.
    Baffone W, Citterio B, Vittoria E, Casaroli A, Campana R, Falzano L, Donelli G (2003) Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int J Food Microbiol 89:31–39PubMedCrossRefGoogle Scholar
  10. 10.
    Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045PubMedGoogle Scholar
  11. 11.
    Baya AM, Brayton PR, Brown VL, Grimes DJ, Russek-Cohen E, Colwell RR (1986) Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol 51:1285–1292PubMedGoogle Scholar
  12. 12.
    Ben Kahla-Nakbi A, Chaieb K, Bakhrouf A (2009) Investigation of several virulence properties among Vibrio alginolyticus strains isolated from diseased cultured fish in Tunisia. Dis Aquat Org 86:21–28PubMedCrossRefGoogle Scholar
  13. 13.
    Beyhan S, Yildiz FH (2007) Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol 63:995–1007PubMedCrossRefGoogle Scholar
  14. 14.
    Bhattacharjee RN, Park KS, Kumagai Y, Okada K, Yamamoto M, Uematsu S, Matsui K, Kumar H, Kawai T, Iida T, Honda T, Takeuchi O, Akira S (2006) VP1686, a Vibrio type III secretion protein, induces toll-like receptor-independent apoptosis in macrophage through NF-kappaB inhibition. J Biol Chem 281:36897–36904PubMedCrossRefGoogle Scholar
  15. 15.
    Bhattacharjee RN, Park KS, Okada K, Kumagai Y, Uematsu S, Takeuchi O, Akira S, Iida T, Honda T (2005) Microarray analysis identifies apoptosis regulatory gene expression in HCT116 cells infected with thermostable direct hemolysin-deletion mutant of Vibrio parahaemolyticus. Biochem Biophys Res Commun 335:328–334PubMedCrossRefGoogle Scholar
  16. 16.
    Bhowmick TS, Das M, Roy N, Sarkar BL (2006) Phenotypic and molecular typing of Vibrio cholerae O1 and O139 isolates from India. J Infect. doi: 10.1016/j.jinf.2006.09.018
  17. 17.
    Binet R, Maurelli AT (2005) Fitness cost due to mutations in the 16S rRNA associated with spectinomycin resistance in Chlamydia psittaci 6BC. Antimicrob Agents Chemother 49:4455–4464PubMedCrossRefGoogle Scholar
  18. 18.
    Bjelland AM, Sorum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H (2012) LitR of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. Infect Immun 80:1681–1689PubMedCrossRefGoogle Scholar
  19. 19.
    Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio. doi: 10.1128/mBio.00335-10
  20. 20.
    Boyd EF, Cohen AL, Naughton LM, Ussery DW, Binnewies TT, Stine OC, Parent MA (2008) Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 8:110PubMedCrossRefGoogle Scholar
  21. 21.
    Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes and infection / Institut Pasteur 13:992–1001PubMedCrossRefGoogle Scholar
  22. 22.
    Burdette DL, Yarbrough ML, Orvedahl A, Gilpin CJ, Orth K (2008) Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc Natl Acad Sci U S A 105:12497–12502PubMedCrossRefGoogle Scholar
  23. 23.
    Canesi L, Gallo G, Gavioli M, Pruzzo C (2002) Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57:469–476PubMedCrossRefGoogle Scholar
  24. 24.
    Cao X, Studer SV, Wassarman K, Zhang Y, Ruby EG, Miyashiro T (2012) The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. MBio. doi: 10.1128/mBio.00285-11
  25. 25.
    Cao X, Wang Q, Liu Q, Liu H, He H, Zhang Y (2010) Vibrio alginolyticus MviN is a LuxO-regulated protein and affects cytotoxicity towards epithelioma papulosum cyprini (EPC) cells. J Microbiol Technol 20:271–280Google Scholar
  26. 26.
    Chang C, Qing-bai W, Zhu-Hong L, Jing-jing Z, Xiao J, Hong-yan S, Chun-hua R, Chao-qun H (2012) Characterization of role of the toxR gene in the physiology and pathogenicity of Vibrio alginolyticus. Antonie Van Leeuwenhoek 101:281–288CrossRefGoogle Scholar
  27. 27.
    Chase E, Harwood VJ (2011) Comparison of the effects of environmental parameters on growth rates of Vibrio vulnificus biotypes I, II, and III by culture and quantitative PCR analysis. Appl Environ Microbiol 77:4200–4207PubMedCrossRefGoogle Scholar
  28. 28.
    Chavez-Dozal A, Hogan D, Gorman C, Quintanal-Villalonga A, Nishiguchi MK (2012) Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol Ecol 81:562–573PubMedCrossRefGoogle Scholar
  29. 29.
    Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen AB, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF (2003) Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13:2577–2587PubMedCrossRefGoogle Scholar
  30. 30.
    Chen H, Williams HN (2012) Sharing of prey: coinfection of a bacterium by a virus and a prokaryotic predator. MBio 3:e00051–00012PubMedGoogle Scholar
  31. 31.
    Chen WL, Oliver JD, Wong HC (2010) Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int J Food Microbiol 140:232–238PubMedCrossRefGoogle Scholar
  32. 32.
    Chen Y, Johnson JA, Pusch GD, Morris JG Jr, Stine OC (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75:2645–2647PubMedCrossRefGoogle Scholar
  33. 33.
    Chowdhury N, Norris J, McAlister E, Lau SY, Thomas GH, Boyd EF (2012) The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. Microbiology 158:2158–2167PubMedCrossRefGoogle Scholar
  34. 34.
    Cinar HN, Kothary M, Datta AR, Tall BD, Sprando R, Bilecen K, Yildiz F, McCardell B (2010) Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans. PLoS One 5:e11558PubMedCrossRefGoogle Scholar
  35. 35.
    Colquhoun DJ, Aarflot L, Melvold CF (2007) gyrA and parC mutations and associated quinolone resistance in Vibrio anguillarum serotype O2b strains isolated from farmed Atlantic cod (Gadus morhua) in Norway. Antimicrob Agents Chemother 51:2597–2599PubMedCrossRefGoogle Scholar
  36. 36.
    Colwell RR, Brayton PR, Grimes DJ, Roszak SA, Huq A, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered microorganisms. Biotechnology 57:597–600Google Scholar
  37. 37.
    Colwell RR, Brayton PR, Herrington D, Tall B, Huq A, Levine MM (1996) Viable but nonculturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12:28–31CrossRefGoogle Scholar
  38. 38.
    Colwell RR, Grimes DJ (2000) Nonculturable microorganisms in the environment. American Society Microbiology, Washington D. CCrossRefGoogle Scholar
  39. 39.
    Coutard F, Lozach S, Pommepuy M, Hervio-Heath D (2007) Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability. Appl Environ Microbiol 73:5183–5189PubMedCrossRefGoogle Scholar
  40. 40.
    Criminger JD, Hazen TH, Sobecky PA, Lovell CR (2007) Nitrogen fixation by Vibrio parahaemolyticus and its implications for a new ecological niche. Appl Environ Microbiol 73:5959–5961PubMedCrossRefGoogle Scholar
  41. 41.
    Croxatto A, Lauritz J, Chen C, Milton DL (2007) Vibrio anguillarum colonization of rainbow trout integument requires a DNA locus involved in exopolysaccharide transport and biosynthesis. Environ Microbiol 9:370–382PubMedCrossRefGoogle Scholar
  42. 42.
    Dai JH, Lee YS, Wong HC (1992) Effects of iron limitation on production of a siderophore, outer membrane proteins, and hemolysin and on hydrophobicity, cell adherence, and lethality for mice of Vibrio parahaemolyticus. Infect Immun 60:2952–2956PubMedGoogle Scholar
  43. 43.
    Davies BW, Bogard RW, Dupes NM, Gerstenfeld TA, Simmons LA, Mekalanos JJ (2011) DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog 7:e1001295PubMedCrossRefGoogle Scholar
  44. 44.
    Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–370PubMedCrossRefGoogle Scholar
  45. 45.
    Defoirdt T, Darshanee Ruwandeepika HA, Karunasagar I, Boon N, Bossier P (2010) Quorum sensing negatively regulates chitinase in Vibrio harveyi. Environ Microbiol Rep 2:44–49CrossRefGoogle Scholar
  46. 46.
    DePaola A, Ulaszek J, Kaysner CA, Tenge BJ, Nordstrom JL, Wells J, Puhr N, Gendel SM (2003) Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Appl Environ Microbiol 69:3999–4005PubMedCrossRefGoogle Scholar
  47. 47.
    Dhakal BK, Lee W, Kim YR, Choy HE, Ahnn J, Rhee JH (2006) Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem Biophys Res Commun 346:751–757PubMedCrossRefGoogle Scholar
  48. 48.
    Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424PubMedCrossRefGoogle Scholar
  49. 49.
    Drake SL, DePaola A, Jaykus L-A (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Saf 6:120–144CrossRefGoogle Scholar
  50. 50.
    Duperthuy M, Schmitt P, Garzon E, Caro A, Rosa RD, Le Roux F, Lautredou-Audouy N, Got P, Romestand B, de Lorgeril J, Kieffer-Jaquinod S, Bachere E, Destoumieux-Garzon D (2011) Use of OmpU porins for attachment and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus. Proc Natl Acad Sci U S A 108:2993–2998PubMedCrossRefGoogle Scholar
  51. 51.
    Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ (2005) Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A 102:3465–3470PubMedCrossRefGoogle Scholar
  52. 52.
    Fabbri A, Falzano L, Frank C, Donelli G, Matarrese P, Raimondi F, Fasano A, Fiorentini C (1999) Vibrio parahaemolyticus thermostable direct hemolysin modulates cytoskeletal organization and calcium homeostasis in intestinal cultured cells. Infect Immun 67:1139–1148PubMedGoogle Scholar
  53. 53.
    Faruque SM, Kamruzzaman M, Meraj IM, Chowdhury N, Nair GB, Sack RB, Colwell RR, Sack DA (2003) Pathogenic potential of environmental Vibrio cholerae strains carrying genetic variants of the toxin-coregulated pilus pathogenicity island. Infect Immun 71:1020–1025PubMedCrossRefGoogle Scholar
  54. 54.
    Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono-Cerezo S, Enriquez-Rincon F, Berg DE (2001) Cell vacuolation caused by Vibrio cholerae hemolysin. Infect Immun 69:1613–1624PubMedCrossRefGoogle Scholar
  55. 55.
    Fong JC, Syed KA, Klose KE, Yildiz FH (2010) Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156:2757–2769PubMedCrossRefGoogle Scholar
  56. 56.
    Froelich B, Ringwood A, Sokolova I, Oliver J (2010) Uptake and depuration of the C- and E-genotypes of Vibrio vulnificus by the eastern oyster (Crassostrea virginica). Environ Microbiol Rep 2:112–115CrossRefGoogle Scholar
  57. 57.
    Futagawa K, Yoshie-Stark Y, Ogushi M (2011) Monthly variation of biochemical composition of Pacific oysters Crassostrea gigas from two main cultivation areas in Japan. Fish Sci 77:687–696CrossRefGoogle Scholar
  58. 58.
    Garrison-Schilling KL, Grau BL, McCarter KS, Olivier BJ, Comeaux NE, Pettis GS (2011) Calcium promotes exopolysaccharide phase variation and biofilm formation of the resulting phase variants in the human pathogen Vibrio vulnificus. Environ Microbiol 13:643–654PubMedCrossRefGoogle Scholar
  59. 59.
    Gauthier JD, Jones MK, Thiaville P, Joseph JL, Swain RA, Krediet CJ, Gulig PA, Teplitski M, Wright AC (2010) Role of GacA in virulence of Vibrio vulnificus. Microbiology 156:3722–3733PubMedCrossRefGoogle Scholar
  60. 60.
    Gennari M, Ghidini V, Caburlotto G, Lleo MM (2012) Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol Ecol 82:563–573Google Scholar
  61. 61.
    Gillespie SH (2001) Antibiotic resistance in the absence of selective pressure. Int J Antimicrob Agents 17:171–176PubMedCrossRefGoogle Scholar
  62. 62.
    Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608PubMedCrossRefGoogle Scholar
  63. 63.
    Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Kim SM, Kim KS, Lee KH, Park SJ (2006) Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 74:5586–5594PubMedCrossRefGoogle Scholar
  64. 64.
    Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park K-S, Dryselius R, Akeda Y, Honda T, Iida T (2010) Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS One 5:e13365PubMedCrossRefGoogle Scholar
  65. 65.
    Grau BL, Henk MC, Garrison KL, Olivier BJ, Schulz RM, O'Reilly KL, Pettis GS (2008) Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene gluster. Infect Immun 76:1485–1497PubMedCrossRefGoogle Scholar
  66. 66.
    Grau BL, Henk MC, Pettis GS (2005) High-frequency phase variation of Vibrio vulnificus 1003: isolation and characterization of a rugose phenotypic variant. J Bacteriol 187:2519–2525PubMedCrossRefGoogle Scholar
  67. 67.
    Grimes DJ, Johnson CN, Dillon KS, Flowers AR, Noriea NF 3rd, Berutti T (2009) What genomic sequence information has revealed about Vibrio ecology in the ocean—a review. Microb Ecol 58:447–460PubMedCrossRefGoogle Scholar
  68. 68.
    Grimes DJ, Singleton FL, Colwell RR (1984) Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J Appl Bacteriol 57:247–261PubMedCrossRefGoogle Scholar
  69. 69.
    Gulig PA, Bourdage KL, Starks AM (2005) J Microbiol 43(Spec No):118–131PubMedGoogle Scholar
  70. 70.
    Guo Y, Rowe-Magnus DA (2010) Identification of a c-di-GMP-regulated polysaccharide locus governing stress resistance and biofilm and rugose colony formation in Vibrio vulnificus. Infect Immun 78:1390–1402PubMedCrossRefGoogle Scholar
  71. 71.
    Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679PubMedCrossRefGoogle Scholar
  72. 72.
    Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology 1:e60Google Scholar
  73. 73.
    Han H, Wong HC, Kan B, Guo Z, Zeng X, Yin S, Liu X, Yang R, Zhou D (2008) Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'. BMC Genomics 9:570PubMedCrossRefGoogle Scholar
  74. 74.
    Harris-Young L, Tamplin ML, Fisher WS, Mason JW (1993) Effects of physicochemical factors and bacterial colony morphotype on association of Vibrio vulnificus with hemocytes of Crassostrea virginica. Appl Environ Microbiol 59:1012–1017PubMedGoogle Scholar
  75. 75.
    Harris-Young L, Tamplin ML, Mason JW, Aldrich HC, Jackson JK (1995) Viability of Vibrio vulnificus in association with hemocytes of the American oyster (Crassostrea virginica). Appl Environ Microbiol 61:52–57PubMedGoogle Scholar
  76. 76.
    Hasegawa H, Lind EJ, Boin MA, Hase CC (2008) The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 74:4101–4110PubMedCrossRefGoogle Scholar
  77. 77.
    Hazen TH, Pan L, Gu JD, Sobecky PA (2010) The contribution of mobile genetic elements to the evolution and ecology of vibrios. FEMS Microbiol Ecol 74:485–499PubMedCrossRefGoogle Scholar
  78. 78.
    He H, Wang Q, Sheng L, Liu Q, Zhang Y (2011) Functional characterization of Vibrio alginolyticus twin-arginine translocation system: its roles in biofilm formation, extracellular protease activity, and virulence towards fish. Curr Microbiol 62:1193–1199PubMedCrossRefGoogle Scholar
  79. 79.
    Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483PubMedCrossRefGoogle Scholar
  80. 80.
    Henke JM, Bassler BL (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186:3794–3805PubMedCrossRefGoogle Scholar
  81. 81.
    Hernroth B, Lothigius Å, Bölin I (2010) Factors influencing survival of enterotoxigenic Escherichia coli, Salmonella enterica (serovar Typhimurium) and Vibrio parahaemolyticus in marine environments. FEMS Microbiol Ecol 71:272–280PubMedCrossRefGoogle Scholar
  82. 82.
    Hilton T, Rosche T, Froelich B, Smith B, Oliver J (2006) Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 72:6986–6993PubMedCrossRefGoogle Scholar
  83. 83.
    Hirono I, Masuda T, Aoki T (1996) Cloning and detection of the hemolysin gene of Vibrio anguillarum. Microb Pathog 21:173–182PubMedCrossRefGoogle Scholar
  84. 84.
    Hiyoshi H, Kodama T, Iida T, Honda T (2010) Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immun 78:1772–1780PubMedCrossRefGoogle Scholar
  85. 85.
    Hsieh YC, Liang SM, Tsai WL, Chen YH, Liu TY, Liang CM (2003) Study of capsular polysaccharide from Vibrio parahaemolyticus. Infect Immun 71:3329–3336PubMedCrossRefGoogle Scholar
  86. 86.
    Huntley JS, Hall AC, Sathyamoorthy V, Hall RH (1993) Cation flux studies of the lesion induced in human erythrocyte membranes by the thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 61:4326–4332PubMedGoogle Scholar
  87. 87.
    Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283PubMedGoogle Scholar
  88. 88.
    Hussa EA, O'Shea TM, Darnell CL, Ruby EG, Visick KL (2007) Two-component response regulators of Vibrio fischeri: identification, mutagenesis, and characterization. J Bacteriol 189:5825–5838PubMedCrossRefGoogle Scholar
  89. 89.
    Jang J, Jung KT, Park J, Yoo CK, Rhie GE (2011) The Vibrio cholerae VarS/VarA two-component system controls the expression of virulence proteins through ToxT regulation. Microbiology 157:1466–1473PubMedCrossRefGoogle Scholar
  90. 90.
    Joelsson A, Kan B, Zhu J (2007) Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol 73:3742–3746PubMedCrossRefGoogle Scholar
  91. 91.
    Johnson CN, Barnes S, Ogle J, Grimes DJ, Chang Y-J, Peacock AD, Kline L (2008) Microbial community analysis of water, foregut, and hindgut during growth of Pacific white shrimp, Litopenaeus vannamei, in closed-system aquaculture. J World Aquac Soc 39:251–258CrossRefGoogle Scholar
  92. 92.
    Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea NF 3rd, Grimes DJ, Colwell RR (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington, United States. Appl Environ Microbiol. doi: 10.1128/AEM.01296-12
  93. 93.
    Johnson CN, Briles DE, Benjamin WH Jr, Hollingshead SK, Waites KB (2005) Relative fitness of fluoroquinolone-resistant Streptococcus pneumoniae. Emerg Infect Dis 11:814–820PubMedCrossRefGoogle Scholar
  94. 94.
    Johnson CN, Flowers AR, Noriea NF III, Zimmerman AM, Bowers JC, DePaola A, Grimes DJ (2010) Relationships between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl Environ Microbiol 76:7076–7084PubMedCrossRefGoogle Scholar
  95. 95.
    Jones BW, Nishiguchi MK (2004) Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar Biol 144:1151–1155CrossRefGoogle Scholar
  96. 96.
    Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733PubMedCrossRefGoogle Scholar
  97. 97.
    Jones MK, Warner E, Oliver JD (2008) Survival of and in situ gene expression by Vibrio vulnificus at varying salinities in estuarine environments. Appl Environ Microbiol 74:182–187PubMedCrossRefGoogle Scholar
  98. 98.
    Joseph LA, Wright AC (2004) Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 186:889–893PubMedCrossRefGoogle Scholar
  99. 99.
    Jude BA, Martinez RM, Skorupski K, Taylor RK (2009) Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J Bacteriol 191:6911–6917PubMedCrossRefGoogle Scholar
  100. 100.
    Keymer DP, Boehm AB (2011) Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol 77:537–544PubMedCrossRefGoogle Scholar
  101. 101.
    Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH (2003) Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71:5461–5471PubMedCrossRefGoogle Scholar
  102. 102.
    Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866PubMedCrossRefGoogle Scholar
  103. 103.
    Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60:397–407PubMedCrossRefGoogle Scholar
  104. 104.
    Koenig JE, Bourne DG, Curtis B, Dlutek M, Stokes HW, Doolittle WF, Boucher Y (2011) Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation. ISME J 5:962–972Google Scholar
  105. 105.
    Krebs SJ, Taylor RK (2011) Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J Bacteriol 193:5260–5270PubMedCrossRefGoogle Scholar
  106. 106.
    Labreuche Y, Le F Roux, Henry J, Zatylny C, Huvet A, Lambert C, Soudant P, Mazel D, Nicolas JL (2010) Vibrio aestuarianus zinc metalloprotease causes lethality in the Pacific oyster Crassostrea gigas and impairs the host cellular immune defenses. Fish Shellfish Immunol 29:753–758Google Scholar
  107. 107.
    Labreuche Y, Soudant P, Gonçalves M, Lambert C, Nicolas J-L (2006) Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Developmental Comp Immunol 30:367–379CrossRefGoogle Scholar
  108. 108.
    Le Roux F, Zouine M, Chakroun N, Binesse J, Saulnier D, Bouchier C, Zidane N, Ma L, Rusniok C, Lajus A, Buchrieser C, Medigue C, Polz MF, Mazel D (2009) Genome sequence of Vibrio splendidus: an abundant planctonic marine species with a large genotypic diversity. Environ Microbiol 11:1959–1970PubMedCrossRefGoogle Scholar
  109. 109.
    Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH (2008) Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76:1509–1517PubMedCrossRefGoogle Scholar
  110. 110.
    Lee CY, Cheng MF, Yu MS, Pan MJ (2002) Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol Lett 209:31–37PubMedCrossRefGoogle Scholar
  111. 111.
    Lemos ML, Balado M, Osorio CR (2010) Anguibactin- versus vanchrobactin-mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen. Environ Microbiol Rep 2:19–26CrossRefGoogle Scholar
  112. 112.
    Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefGoogle Scholar
  113. 113.
    Litwin CM, Rayback TW, Skinner J (1996) Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun 64:2834–2838PubMedGoogle Scholar
  114. 114.
    Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N, Daldal F, Zhong Z, Kan B, Zhu J (2011) Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci 108:810–815PubMedCrossRefGoogle Scholar
  115. 115.
    Liuxy PC, Lee KK, Chen SN (1996) Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon. Lett Appl Microbiol 22:413–416CrossRefGoogle Scholar
  116. 116.
    Liverman AD, Cheng HC, Trosky JE, Leung DW, Yarbrough ML, Burdette DL, Rosen MK, Orth K (2007) Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci U S A 104:17117–17122PubMedCrossRefGoogle Scholar
  117. 117.
    Lo Scrudato M, Blokesch M (2012) The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 8:e1002778PubMedCrossRefGoogle Scholar
  118. 118.
    Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749PubMedCrossRefGoogle Scholar
  119. 119.
    Mansson M, Gram L, Larsen TO (2011) Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 9:1440–1468PubMedCrossRefGoogle Scholar
  120. 120.
    Mathur J, Waldor MK (2004) The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72:3577–3583PubMedCrossRefGoogle Scholar
  121. 121.
    Matson JS, Withey JH, DiRita VJ (2007) Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 75:5542–5549PubMedCrossRefGoogle Scholar
  122. 122.
    Matz C, Nouri B, McCarter L, Martinez-Urtaza J (2011) Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 6:e20275PubMedCrossRefGoogle Scholar
  123. 123.
    McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29PubMedCrossRefGoogle Scholar
  124. 124.
    Meador CE, Parsons MM, Bopp CA, Gerner-Smidt P, Painter JA, Vora GJ (2007) Virulence gene- and pandemic group-specific marker profiling of clinical Vibrio parahaemolyticus isolates. J Clin Microbiol 45:1133–1139PubMedCrossRefGoogle Scholar
  125. 125.
    Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, Greenberg EP, Banin E (2009) Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 75:5704–5707PubMedCrossRefGoogle Scholar
  126. 126.
    Merrell DS, Tischler AD, Lee SH, Camilli A (2000) Vibrio cholerae requires rpoS for efficient intestinal colonization. Infect Immun 68:6691–6696PubMedCrossRefGoogle Scholar
  127. 127.
    Ming X, Yamamoto K, Honda T (1994) Construction and characterization of an isogenic mutant of Vibrio parahaemolyticus having a deletion in the thermostable direct hemolysin-related hemolysin gene (trh). J Bacteriol 176:4757–4760Google Scholar
  128. 128.
    Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782PubMedGoogle Scholar
  129. 129.
    Morris AR, Visick KL (2010) Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ Microbiol 12:2051–2059PubMedGoogle Scholar
  130. 130.
    Naka H, Crosa JH (2011) Genetic determinants of virulence in the marine fish pathogen Vibrio anguillarum. Fish pathology 46:1–10PubMedCrossRefGoogle Scholar
  131. 131.
    Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH (2011) Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 79:2889–2900PubMedCrossRefGoogle Scholar
  132. 132.
    Naka H, Hirono I, Aoki T (2005) Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene. J Fish Dis 28:81–88PubMedCrossRefGoogle Scholar
  133. 133.
    Naka H, López CS, Crosa JH (2010) Role of the pJM1 plasmid-encoded transport proteins FatB, C and D in ferric anguibactin uptake in the fish pathogen Vibrio anguillarum. Environ Microbiol Rep 2:104–111PubMedCrossRefGoogle Scholar
  134. 134.
    Nakasone N, Iwanaga M (1992) The role of pili in colonization of the rabbit intestine by Vibrio parahaemolyticus Na2. Microbiol Immunol 36:123–130PubMedGoogle Scholar
  135. 135.
    Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK (2006) RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2:e109PubMedCrossRefGoogle Scholar
  136. 136.
    Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK (2010) A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog 6:e1001102PubMedCrossRefGoogle Scholar
  137. 137.
    Nishibuchi M, Fasano A, Russell RG, Kaper JB (1992) Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun 60:3539–3545PubMedGoogle Scholar
  138. 138.
    Nishiyama S, Suzuki D, Itoh Y, Suzuki K, Tajima H, Hyakutake A, Homma M, Butler-Wu SM, Camilli A, Kawagishi I (2012) Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids. Infect Immun 80:3170–3178PubMedCrossRefGoogle Scholar
  139. 139.
    Okitsu T, Osawa R, Pornruangwong S, Yamai S (1997) Urea hydrolysis and suppressed production of thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus associated with presence of TDH-related hemolysin genes. Curr Microbiol 34:314–317PubMedCrossRefGoogle Scholar
  140. 140.
    Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43(Spec No):93–100PubMedGoogle Scholar
  141. 141.
    Paranjpye RN, Johnson AB, Baxter AE, Strom MS (2007) Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters. Appl Environ Microbiol 73:5041–5044PubMedCrossRefGoogle Scholar
  142. 142.
    Paranjpye RN, Lara JC, Pepe JC, Pepe CM, Strom MS (1998) The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun 66:5659–5668PubMedGoogle Scholar
  143. 143.
    Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun 73:1411–1422PubMedCrossRefGoogle Scholar
  144. 144.
    Parsot C, Taxman E, Mekalanos JJ (1991) ToxR regulates the production of lipoproteins and the expression of serum resistance in Vibrio cholerae. Proc Natl Acad Sci 88:1641–1645PubMedCrossRefGoogle Scholar
  145. 145.
    Patra T, Koley H, Ramamurthy T, Ghose AC, Nandy RK (2012) The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. J Bacteriol 194:3377–3385PubMedCrossRefGoogle Scholar
  146. 146.
    Paul K, Ghosh A, Sengupta N, Chowdhury R (2004) Competitive growth advantage of nontoxigenic mutants in the stationary phase in archival cultures of pathogenic Vibrio cholerae strains. Infect Immun 72:5478–5482PubMedCrossRefGoogle Scholar
  147. 147.
    Pruzzo C, Gallo G, Canesi L (2005) Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environ Microbiol 7:761–772PubMedCrossRefGoogle Scholar
  148. 148.
    Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533PubMedCrossRefGoogle Scholar
  149. 149.
    Qiao G, Lee D, Woo S, Li H, Xu D-H, Park S (2012) Microbiological characteristics of Vibrio scophthalmi isolates from diseased olive flounder Paralichthys olivaceus. Fish Sci 78:853–863CrossRefGoogle Scholar
  150. 150.
    Quinn MJ, Resch CT, Sun J, Lind EJ, Dibrov P, Hase CC (2012) NhaP1 is a K+(Na+)/H+ antiporter required for growth and internal pH homeostasis of Vibrio cholerae at low extracellular pH. Microbiology 158:1094–1105PubMedCrossRefGoogle Scholar
  151. 151.
    Quirke AM, Reen FJ, Claesson MJ, Boyd EF (2006) Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. Bioinformatics 22:905–910PubMedCrossRefGoogle Scholar
  152. 152.
    Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM (2008) Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27:347–355PubMedCrossRefGoogle Scholar
  153. 153.
    Raimondi F, Kao JP, Fiorentini C, Fabbri A, Donelli G, Gasparini N, Rubino A, Fasano A (2000) Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect Immun 68:3180–3185PubMedCrossRefGoogle Scholar
  154. 154.
    Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24:751–757PubMedCrossRefGoogle Scholar
  155. 155.
    Rodkhum C, Maki T, Hirono I, Aoki T (2008) gyrA and parC associated with quinolone resistance in Vibrio anguillarum. J Fish Dis 31:395–399PubMedCrossRefGoogle Scholar
  156. 156.
    Rogers MB, Sexton JA, DeCastro GJ, Calderwood SB (2000) Identification of an operon required for ferrichrome iron utilization in Vibrio cholerae. J Bacteriol 182:2350–2353PubMedCrossRefGoogle Scholar
  157. 157.
    Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341–348PubMedCrossRefGoogle Scholar
  158. 158.
    Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 102:3004–3009PubMedCrossRefGoogle Scholar
  159. 159.
    Rui H, Liu Q, Ma Y, Wang Q, Zhang Y (2008) Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol Lett 285:155–162PubMedCrossRefGoogle Scholar
  160. 160.
    Rui H, Liu Q, Wang Q, Ma Y, Liu H, Shi C, Zhang Y (2009) Role of alkaline serine protease, asp, in vibrio alginolyticus virulence and regulation of its expression by luxO-luxR regulatory system. J Microbiol Biotechnol 19:431–438PubMedCrossRefGoogle Scholar
  161. 161.
    Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8:e1002917PubMedCrossRefGoogle Scholar
  162. 162.
    Selvin J, Lipton AP (2003) Vibrio alginolyticus associated with white spot disease of Penaeus monodon. Dis Aquat Organ 57:147–150PubMedCrossRefGoogle Scholar
  163. 163.
    Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT, Waldor MK, Mekalanos JJ (2011) Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. MBio 2:e00106–e00111PubMedCrossRefGoogle Scholar
  164. 164.
    Shinoda S, Miyoshi S-I (2011) Proteases produced by vibrios. Biocontrol Sci 16:1–11PubMedCrossRefGoogle Scholar
  165. 165.
    Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72:1445–1451PubMedCrossRefGoogle Scholar
  166. 166.
    Souza CP, Almeida BC, Colwell RR, Rivera IN (2011) The importance of chitin in the marine environment. Mar Biotechnol (NY) 13:823–830CrossRefGoogle Scholar
  167. 167.
    Stabili L, Gravili C, Piraino S, Boero F, Alifano P (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608PubMedCrossRefGoogle Scholar
  168. 168.
    Stauder M, Huq A, Pezzati E, Grim CJ, Ramoino P, Pane L, Colwell RR, Pruzzo C, Vezzulli L (2012) Role of GbpA protein, an important virulence-related colonization factor, for Vibrio cholerae's survival in the aquatic environment. Environmental Microbiology Reports 4:439–445CrossRefGoogle Scholar
  169. 169.
    Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C (2010) Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ Microbiol Rep 2:140–144CrossRefGoogle Scholar
  170. 170.
    Takahashi A, Iida T, Naim R, Naykaya Y, Honda T (2001) Chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. J Med Microbiol 50:870–878PubMedGoogle Scholar
  171. 171.
    Takahashi A, Kenjyo N, Imura K, Myonsun Y, Honda T (2000) Cl(−) secretion in colonic epithelial cells induced by the vibrio parahaemolyticus hemolytic toxin related to thermostable direct hemolysin. Infect Immun 68:5435–5438PubMedCrossRefGoogle Scholar
  172. 172.
    Tam VC, Serruto D, Dziejman M, Brieher W, Mekalanos JJ (2007) A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell host microbe 1:95–107PubMedCrossRefGoogle Scholar
  173. 173.
    Tan HJ, Liu SH, Oliver JD, Wong HC (2010) Role of RpoS in the susceptibility of low salinity-adapted Vibrio vulnificus to environmental stresses. Int J Food Microbiol 137:137–142PubMedCrossRefGoogle Scholar
  174. 174.
    Taviani E, Spagnoletti M, Ceccarelli D, Haley BJ, Hasan NA, Chen A, Colombo MM, Huq A, Colwell RR (2012) Genomic analysis of ICEVchBan8: an atypical genetic element in Vibrio cholerae. FEBS Lett 586:1617–1621PubMedCrossRefGoogle Scholar
  175. 175.
    Tian Y, Wang Q, Liu Q, Ma Y, Cao X, Zhang Y (2008) Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch Microbiol 190:585–594PubMedCrossRefGoogle Scholar
  176. 176.
    Tran HT, Barnich N, Mizoguchi E (2011) Potential role of chitinases and chitin-binding proteins in host–microbial interactions during the development of intestinal inflammation. Histol Histopathol 26:1453–1464PubMedGoogle Scholar
  177. 177.
    Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, Siegel RM, Orth K (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279:51953–51957PubMedCrossRefGoogle Scholar
  178. 178.
    Tsou AM, Liu Z, Cai T, Zhu J (2011) The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. Microbiology 157:1620–1628PubMedCrossRefGoogle Scholar
  179. 179.
    Vezzulli L, Pruzzo C, Huq A, Colwell RR (2010) Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ Microbiol Rep 2:27–33CrossRefGoogle Scholar
  180. 180.
    Vidgen M, Carson J, Higgins M, Owens L (2006) Changes to the phenotypic profile of Vibrio harveyi when infected with the Vibrio harveyi myovirus-like (VHML) bacteriophage. J Appl Microbiol 100:481–487PubMedCrossRefGoogle Scholar
  181. 181.
    Visick KL (2009) An intricate network of regulators controls biofilm formation and colonization by Vibrio fischeri. Mol Microbiol 74:782–789PubMedCrossRefGoogle Scholar
  182. 182.
    Volety AK, McCarthy SA, Tall BD, Curtis SK, Fisher WS, Genthner FJ (2001) Responses of oyster Crassostrea virginica hemocytes to environmental and clinical isolates of Vibrio parahaemolyticus. Aquat Microb Ecol 25:11–20CrossRefGoogle Scholar
  183. 183.
    Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc Natl Acad Sci U S A 102:19109–19114PubMedCrossRefGoogle Scholar
  184. 184.
    Waldor MK, Colwell R, Mekalanos JJ (1994) The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A 91:11388–11392PubMedCrossRefGoogle Scholar
  185. 185.
    Waldor MK, Tschape H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165PubMedGoogle Scholar
  186. 186.
    Wang D, Wang H, Zhou Y, Zhang Q, Zhang F, Du P, Wang S, Chen C, Kan B (2011) Genome sequencing reveals unique mutations in characteristic metabolic pathways and the transfer of virulence genes between V. mimicus and V. cholerae. PLoS One 6:e21299PubMedCrossRefGoogle Scholar
  187. 187.
    Wang Q, Liu Q, Cao X, Yang M, Zhang Y (2008) Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus: their roles in iron utilization and virulence. Arch Microbiol 190:595–603PubMedCrossRefGoogle Scholar
  188. 188.
    Waters CM, Wu JT, Ramsey ME, Harris RC, Bassler BL (2010) Control of the type 3 secretion system in Vibrio harveyi by quorum sensing through repression of ExsA. Appl Environ Microbiol 76:4996–5004PubMedCrossRefGoogle Scholar
  189. 189.
    Weber B, Chen C, Milton DL (2010) Colonization of fish skin is vital for Vibrio anguillarum to cause disease. Environ Microbiol Rep 2:133–139CrossRefGoogle Scholar
  190. 190.
    West PA, Okpokwasili GC, Brayton PR, Grimes DJ, Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl Environ Microbiol 48:988–993PubMedGoogle Scholar
  191. 191.
    Wietz M, Månsson M, Gram L (2011) Chitin stimulates production of the antibiotic andrimid in a Vibrio coralliilyticus strain. Environ Microbiol Rep 3:559–564CrossRefGoogle Scholar
  192. 192.
    Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AF, Svergun DI, Eijsink VG, Chatterjee NS, van Aalten DM (2012) The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8:e1002373PubMedCrossRefGoogle Scholar
  193. 193.
    Wong HC, Peng PY, Han JM, Chang CY, Lan SL (1998) Effect of mild acid treatment on the survival, enteropathogenicity, and protein production in Vibrio parahaemolyticus. Infect Immun 66:3066–3071PubMedGoogle Scholar
  194. 194.
    Wright AC, Simpson LM, Oliver JD, Morris JG Jr (1990) Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect Immun 58:1769–1773PubMedGoogle Scholar
  195. 195.
    Xie ZY, Hu CQ, Chen C, Zhang LP, Ren CH (2005) Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett Appl Microbiol 41:202–207PubMedCrossRefGoogle Scholar
  196. 196.
    Xiong XP, Wang C, Ye MZ, Yang TC, Peng XX, Li H (2010) Differentially expressed outer membrane proteins of Vibrio alginolyticus in response to six types of antibiotics. Mar Biotechnol (NY) 12:686–695CrossRefGoogle Scholar
  197. 197.
    Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100:1286–1291PubMedCrossRefGoogle Scholar
  198. 198.
    Yang H, Chen J, Yang G, Zhang X-H, Li Y, Wang M (2007) Characterization and pathogenicity of the zinc metalloprotease EmpA of Vibrio anguillarum expressed in Escherichia coli. Curr Microbiol 54:244–248PubMedCrossRefGoogle Scholar
  199. 199.
    Ye J, Ma Y, Liu Q, Zhao DL, Wang QY, Zhang YX (2008) Regulation of Vibrio alginolyticus virulence by the LuxS quorum-sensing system. J Fish Dis 31:161–169PubMedCrossRefGoogle Scholar
  200. 200.
    Yildiz FH, Schoolnik GK (1998) Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 180:773–784PubMedGoogle Scholar
  201. 201.
    Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118PubMedCrossRefGoogle Scholar
  202. 202.
    Yoon KS, Min KJ, Jung YJ, Kwon KY, Lee JK, Oh SW (2008) A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiol 25:635–641PubMedCrossRefGoogle Scholar
  203. 203.
    Zhang L, Krachler AM, Broberg CA, Li Y, Mirzaei H, Gilpin CJ, Orth K (2012) Type III effector VopC mediates invasion for Vibrio species. Cell Rep 1:453–460PubMedCrossRefGoogle Scholar
  204. 204.
    Zhang XH, Austin B (2005) Haemolysins in Vibrio species. J Appl Microbiol 98:1011–1019PubMedCrossRefGoogle Scholar
  205. 205.
    Zhao Z, Chen C, Hu C-Q, Ren C-H, Zhao J-J, Zhang L-P, Jiang X, Luo P, Wang Q-B (2010) The type III secretion system of Vibrio alginolyticus induces rapid apoptosis, cell rounding and osmotic lysis of fish cells. Microbiology 156:2864–2872PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Environmental SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Environmental SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations