Microbial Ecology

, Volume 65, Issue 3, pp 566–577 | Cite as

The Thiamine Content of Phytoplankton Cells Is Affected by Abiotic Stress and Growth Rate

  • Peter SylvanderEmail author
  • Norbert Häubner
  • Pauline Snoeijs
Microbiology of Aquatic Systems


Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs.


Phytoplankton Thiamine Particulate Organic Carbon High Trophic Level Phytoplankton Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Malin Sundström for assistance and for being a great company in the laboratory. The research presented in this paper was financed by the following research grants: Formas 21.9/2003-1033, Formas 21.0/2004-0313 and EU Strukturstöd FiV Dnr 231-0692-04.

Supplementary material

248_2012_156_MOESM1_ESM.pdf (73 kb)
Online resources 1 (PDF 72 kb)


  1. 1.
    Ahmad MR, Saxena PM, Amla DV, Shyam R (1978) Effect of abscisic acid on the blue green algae Anacystis nidulans and Nostoc muscorum. Beitr Biol Pflanz 54:33–40Google Scholar
  2. 2.
    Amcoff P, Börjesson H, Eriksson R, Norrgren L, McDonald G, Fitzsimons JD, Honeyfield DC (1998) Effects of thiamine treatments on survival of M74-affected feral Baltic salmon. Am Fish Soc Symp 21:31–40Google Scholar
  3. 3.
    Balk L, Hägerroth P, Åkerman G, Hanson M, Tjärnlund U, Hansson T, Halgrimsson GT, Zebuhr Y, Broman D, Mörner T, Sundberg T (2009) Wild birds of declining European species are dying from a thiamine deficiency syndrome. PNAS 106:12001–12006PubMedCrossRefGoogle Scholar
  4. 4.
    Ban S, Burns C, Castel J, Chaudron Y, Christou E, Escribano R, Umani SF, Gasparini S, Guerrero Ruiz F, Hoffmeyer M, Ianora A, Kang H-K, Laabir M, Lavoste A, Miralto A, Ning X, Poulet S, Rodriguez V, Runge J, Shi J, Starr M, Uye S-I, Wang Y (1997) The paradox of diatom-copepod interactions. Mar Ecol Prog Ser 157:287–293CrossRefGoogle Scholar
  5. 5.
    Brown MR, Mular M, Miller I, Farmer C, Trenerry C (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255CrossRefGoogle Scholar
  6. 6.
    Carlucci AF, Silbernagel SB, McNally PM (1969) Influence of temperature and solar radiation on persistence of vitamin B12, thiamine and biotin in seawater. J Phycol 5:302–305CrossRefGoogle Scholar
  7. 7.
    Carlucci AF, Bowes PM (1970) Vitamin production and utilization by phytoplankton in mixed culture. J Phycol 6:393–400Google Scholar
  8. 8.
    Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183PubMedCrossRefGoogle Scholar
  9. 9.
    Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. PNAS 104:20770–20775PubMedCrossRefGoogle Scholar
  10. 10.
    Ehling-Schulz M, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945PubMedGoogle Scholar
  11. 11.
    Engstrom J, Koski M, Viitasalo M, Reinikainen M, Repka S, Sivonen K (2000) Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. J Plankton Res 22:1403–1409CrossRefGoogle Scholar
  12. 12.
    Faria JC (2009) Resources of Tinn-R GUI/Editor for R environment. UESC, IlheusGoogle Scholar
  13. 13.
    Garbayo I, Cuaresma M, Vílchez C, Vega JM (2008) Effect of abiotic stress on the production of lutein and β-carotene by Chlamydomonas acidophila. Process Biochem 43:1158–1161CrossRefGoogle Scholar
  14. 14.
    Gold K, Roels OA, Bank H (1966) Temperature dependent destruction of thiamine in seawater. Limnol Oceanogr 11:410–413CrossRefGoogle Scholar
  15. 15.
    Gold K (1968) Some factors affecting the stability of thiamine. Limnol Oceanogr 13:185–188CrossRefGoogle Scholar
  16. 16.
    Guillard R, Ryther J (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239PubMedCrossRefGoogle Scholar
  17. 17.
    Gulati R, Demott W (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768CrossRefGoogle Scholar
  18. 18.
    Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812CrossRefGoogle Scholar
  19. 19.
    Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, ParisGoogle Scholar
  20. 20.
    Kentzer T, Mazur H (1991) Abscisic acid as endogenous inhibitor of the marine diatom Coscinodiscus granii. Acta Physiol Plant 13:153–157Google Scholar
  21. 21.
    Knoechel R, Quinn EM (1989) Carbon dynamics of logarithmetic and stationary phase phytoplankton as determined by track autoradiography. Cytometry 10:612–621PubMedCrossRefGoogle Scholar
  22. 22.
    Koski M, Schmidt K, Engström-Öst J, Viitasalo M, Jonasdóttir S, Repka S, Sivonen K (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47:878–885CrossRefGoogle Scholar
  23. 23.
    Kumar Saha S, Uma L, Subramanian G (2006) Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbial Ecol 45:263–272CrossRefGoogle Scholar
  24. 24.
    Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological Ecology. Annu Rev Physiol 68:253–278PubMedCrossRefGoogle Scholar
  25. 25.
    Lonsdale D (2006) A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. eCAM 3:49–59PubMedGoogle Scholar
  26. 26.
    Lukienko PI, Mel’nichenko NG, Zverinskii IV, Zabrodskaya SV (2000) Antioxidant properties of thiamine. B Exp Biol Med 130:303–305Google Scholar
  27. 27.
    Marcquenski S, Brown S (1997) Early mortality syndrome in salmonid fishes from the great lakes. In: Rolland RM, Gilbertson M, Peterson RE (eds) Chemically induced alterations in functional development and reproduction of fishes. SETAC, Pensacola, pp 135–152Google Scholar
  28. 28.
    Montagnes DJS, Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46:2008–2018CrossRefGoogle Scholar
  29. 29.
    Nascimento FJ, Karlson AM, Elmgren R (2008) Settling blooms of filamentous cyanobacteria as food for meiofauna assemblages. Limnol Oceanogr 53:2636–2643CrossRefGoogle Scholar
  30. 30.
    Nascimento FJ, Karlsson AML, Näslund J, Gorokhova E (2009) Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. J Exp Mar Biol Ecol 368:138–146CrossRefGoogle Scholar
  31. 31.
    Nishijima T, Shiozaki R, Hata Y (1979) Production of vitamin B12, thiamine, and biotin by freshwater phytoplankton. Bull Jpn Soc Sci Fish 45:199–204CrossRefGoogle Scholar
  32. 32.
    Ohwada K, Taga N (1972) Distribution and seasonal variation of vitamin B12, thiamine and biotin in the sea. Mar Chem 1:61–73CrossRefGoogle Scholar
  33. 33.
    Pearl HW (1984) Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oecologia 61:143–149CrossRefGoogle Scholar
  34. 34.
    Pinto E, Pedersen M, Snoeijs P, Van Nieuwerburgh L, Colepicolo P (2002) Simultaneous detection of thiamine and Its phosphate esters from microalgae by HPLC. BBRC 291:344–348PubMedGoogle Scholar
  35. 35.
    Pinto E, Van Nieuwerburgh L, Paes de Barros M, Pedersén M, Colepicolo P, Snoeijs P (2003) Density-dependent patterns of thiamine and pigment production in the diatom Nitzschia microcephala. Phytochemistry 63:155–163PubMedCrossRefGoogle Scholar
  36. 36.
    Prasanna R, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V, Joshi M, Natarajan C (2010) Rediscovering cyanobacteria as valuable sources of bioactive compounds. Appl Biochem Microbiol 46:119–134CrossRefGoogle Scholar
  37. 37.
    Provasoli L, Carlucci AF (1974) Vitamins and growth regulators. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Science Publishers, Oxford, pp 741–787Google Scholar
  38. 38.
    Rady AA, El-Sheek MM, Matkovics B (1994) Temperature shift induced damage in antioxidant enzyme system of cyanobacterium Synechocystis PCC 6803. Int J Biochem 26:433–435CrossRefGoogle Scholar
  39. 39.
    Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143PubMedCrossRefGoogle Scholar
  40. 40.
    Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:2PubMedCrossRefGoogle Scholar
  41. 41.
    Ross JP, Rice JP, Carbonneau D, Honeyfield D (2003) Assessment of effects of diet and thiamin on Lake Griffin alligator mortality. Final report to St. Johns River Water Management District Contract #SF624AA, Accessed 14 May 2010.
  42. 42.
    Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394PubMedCrossRefGoogle Scholar
  43. 43.
    Shah A, Vaidya B (1977) Detection of vitamin B12 and pantothenic acid in cell exudates of blue-green algae. Biol Plant 19:426–429CrossRefGoogle Scholar
  44. 44.
    Sheeba SVP, Srivastava PK, Prasad SM (2011) Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicol Environ Saf 74:1981–1993PubMedCrossRefGoogle Scholar
  45. 45.
    Srivastava A, Bhargava P, Rai LC (2005) Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. World J Microb Biot 21:1291–1298CrossRefGoogle Scholar
  46. 46.
    Staub R (1961) Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. Aquat Sci 23:82–198CrossRefGoogle Scholar
  47. 47.
    Tang YZ, Koch F, Gobler CJ (2010) Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. PNAS 107:20756–20761PubMedCrossRefGoogle Scholar
  48. 48.
    Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432PubMedCrossRefGoogle Scholar
  49. 49.
    Van Nieuwerburgh L, Wänstrand I, Snoeijs P (2004) Growth and C:N:P ratios in copepods grazing on N- or Si-limited phytoplankton blooms. Hydrobiologia 514:57–72CrossRefGoogle Scholar
  50. 50.
    Vishniac HS, Riley GA (1961) Cobalamine and thiamine in long island sound: patterns of distributions and ecological significance. Limnol Oceanogr 6:36–41CrossRefGoogle Scholar
  51. 51.
    Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, Cypionka H, Daniel R, Drepper T, Gerdts G, Hahnke S, Han C, Jahn D, Kalhoefer D, Kiss H, Klenk HP, Kyrpides N, Liebl W, Liesegang W, Meincke L, Pati A, Petersen J, Piekarski T, Pommerenke C, Pradella S, Pukall R, Rabus R, Stackebrandt E, Thole S, Thompson L, Tielen P, Tomasch J, von Jan M, Wanphrut N, Wichels A, Zech H, Simon M (2009) The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. ISME J 4:61–77PubMedCrossRefGoogle Scholar
  52. 52.
    Webb E, Claas K, Downs D (1998) thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J Biol Chem 273:8946–8950PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Peter Sylvander
    • 1
    Email author
  • Norbert Häubner
    • 2
  • Pauline Snoeijs
    • 1
  1. 1.Department of Systems EcologyStockholm UniversityStockholmSweden
  2. 2.Department of Ecology and EvolutionUppsala UniversityUppsalaSweden

Personalised recommendations