Microbial Ecology

, Volume 65, Issue 3, pp 720–730 | Cite as

Intra- and Intergenomic Variation of Ribosomal RNA Operons in Concurrent Alteromonas macleodii Strains

  • Mario López-Pérez
  • Aitor Gonzaga
  • Ana-Belen Martin-Cuadrado
  • Purificación López-García
  • Francisco Rodriguez-Valera
  • Nikole E. Kimes
Genes and Genomes


Biodiversity estimates based on ribosomal operon sequence diversity rely on the premise that a sequence is characteristic of a single specific taxon or operational taxonomic unit (OTU). Here, we have studied the sequence diversity of 14 ribosomal RNA operons (rrn) contained in the genomes of two isolates (five operons in each genome) and four metagenomic fosmids, all from the same seawater sample. Complete sequencing of the isolate genomes and the fosmids establish that they represent strains of the same species, Alteromonas macleodii, with average nucleotide identity (ANI) values >97 %. Nonetheless, we observed high levels of intragenomic heterogeneity (i.e., variability between operons of a single genome) affecting multiple regions of the 16S and 23S rRNA genes as well as the internally transcribed spacer 1 (ITS-1) region. Furthermore, the ribosomal operons exhibited intergenomic heterogeneity (i.e., variability between operons located in separate genomes) in each of these regions, compounding the variability. Our data reveal the extensive heterogeneity observed in natural populations of A. macleodii at a single point in time and support the idea that distinct lineages of A. macleodii exist in the deep Mediterranean. These findings highlight the potential of rRNA fingerprinting methods to misrepresent species diversity while simultaneously failing to recognize the ecological significance of individual strains.


Lateral Gene Transfer Prochlorococcus rRNA Operon Average Nucleotide Identity Alteromonas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by projects MAGYK (BIO2008-02444), MICROGEN (Programa CONSOLIDER-INGENIO 2010 CDS2009-00006), CGL2009-12651-C02-01 from the Spanish Ministerio de Ciencia e Inovación, DIMEGEN (PROMETEO/2010/089) and ACOMP/2009/155 from the Generalitat Valenciana. FEDER funds supported this project.

Supplementary material

248_2012_153_MOESM1_ESM.docx (30 kb)
Table S1 16S rRNA gene similarity. (DOCX 30 kb)
248_2012_153_MOESM2_ESM.docx (30 kb)
Table S2 23S rRNA gene similarity. (DOCX 30 kb)
248_2012_153_MOESM3_ESM.docx (24 kb)
Table S3 Heterogeneity of ITS-1 lengths using common ARISA primers. (DOCX 23 kb)
248_2012_153_MOESM4_ESM.docx (896 kb)
Fig. S1 Phylogenetic trees showing the inconsistent clustering of two different Alteromonas species. The phylogenetic trees were constructed using the maximum likelihood method based on 16S rRNA gene sequences amplified in silico by two sets of universal primers [38]. 16S genes from Alteromonas macleodii (including all 14 operons from AltDE, AltDE1, and four AD1000 fosmids) and Alteromonas SN2 (5 operons) were used. Numbers on branches indicate bootstrap support values for 100 replicates. The tree has been rooted using the Pseudomonas atlantica as an outgroup. A) Sequences amplified by universal primers E341F (5′ CCTACGGGNGGCNGCA 3′) and E1406R (5′ GACGGGCGGTGWGTRCA 3′). B) Sequences amplified by universal primers E969F (5′ ACGCGARRAACCTTACC 3′) and E1492R (5′ ACCTTGTTACGACTT 3′). Op., operon number; SN2, Alteromonas SN2; P.alt, Pseudomonas atlantica (DOCX 896 kb)


  1. 1.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  2. 2.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740PubMedCrossRefGoogle Scholar
  3. 3.
    Woese CR (1982) Archaebacteria and cellular origins: an overview. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische. Mikrobiologie 3:1–17Google Scholar
  4. 4.
    Pace NR, Olsen GJ, Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell 45:325–326PubMedCrossRefGoogle Scholar
  5. 5.
    Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576PubMedCrossRefGoogle Scholar
  6. 6.
    Rastogi R, Wu M, DasGupta I, Fox GE (2009) Visualization of ribosomal RNA operon copy number distribution. BMC Microbiol 9:1–5CrossRefGoogle Scholar
  7. 7.
    Hashimoto JG, Stevenson BS, Schmidt TM (2003) Rates and consequences of recombination between rRNA operons. J Bacteriol 185:966–972PubMedCrossRefGoogle Scholar
  8. 8.
    Lim K, Furuta Y, Kobayashi I (2012) Large variations in bacterial ribosomal RNA genes. Mol Biol Evol 29:2937–2948PubMedCrossRefGoogle Scholar
  9. 9.
    Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P, Yang L, Poles M, Brown S, Sotero S, DeSantis T, Brodie E, Nelson KE, Pei Z (2010) Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76:3886–3897PubMedCrossRefGoogle Scholar
  10. 10.
    Morandi A, Zhaxybayeva O, Gogarten JP, Graf J (2005) Evolutionary and diagnostic implications of intragenomic heterogeneity in the 16S rRNA gene in Aeromonas strains. J Bacteriol 187:6561–6564PubMedCrossRefGoogle Scholar
  11. 11.
    López-López A, Benlloch S, Bonfá M, Rodríguez-Valera F, Mira A (2007) Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol 65:687–696PubMedCrossRefGoogle Scholar
  12. 12.
    Bodilis J, Nsigue-Meilo S, Besaury L, Quillet L (2012) Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS One 7:e35647PubMedCrossRefGoogle Scholar
  13. 13.
    Marchandin H, Teyssier C, Siméon de Buochberg M, Jean-Pierre H, Carriere C, Jumas-Bilak E (2003) Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology 149:1493–1501PubMedCrossRefGoogle Scholar
  14. 14.
    Arias CR, Olivares-Fuster O, Goris J (2010) High intragenomic heterogeneity of 16S rRNA genes in a subset of Vibrio vulnificus strains from the western Mediterranean coast. Int Microbiol 13:179–188PubMedGoogle Scholar
  15. 15.
    Harth E, Romero J, Torres R, Espejo RT (2007) Intragenomic heterogeneity and intergenomic recombination among Vibrio parahaemolyticus16S rRNA genes. Microbiology 153:2640–2647PubMedCrossRefGoogle Scholar
  16. 16.
    Jensen S, Frost P, Torsvik VL (2009) The nonrandom microheterogeneity of 16S rRNA genes in Vibrio splendidus may reflect adaptation to versatile lifestyles. FEMS Microbiol Lett 294:207–215PubMedCrossRefGoogle Scholar
  17. 17.
    Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S (2007) Use of 16S rRNA and rpob genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288PubMedCrossRefGoogle Scholar
  18. 18.
    Tsuru T, Kawai M, Mizutani-Ui Y, Uchiyama I, Kobayashi I (2006) Evolution of paralogous genes: reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus. Mol Biol Evol 23:1269–1285PubMedCrossRefGoogle Scholar
  19. 19.
    Tambong JT, Xu R, Bromfield ESP (2009) Intercistronic heterogeneity of the 16S–23S rRNA spacer region among Pseudomonas strains isolated from subterranean seeds of hog peanut (Amphicarpa bracteata). Microbiology 155:2630–2640PubMedCrossRefGoogle Scholar
  20. 20.
    Sadeghifard N, Gürtler V, Beer M, Seviour RJ (2006) The mosaic nature of intergenic 16S-23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Appl Environ Microbiol 72:7311–7323PubMedCrossRefGoogle Scholar
  21. 21.
    Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929PubMedGoogle Scholar
  22. 22.
    Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Y, Laing C, Steele M, Ziebell K, Johnson R, Benson A, Taboada E, Gannon V (2007) Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8:121PubMedCrossRefGoogle Scholar
  24. 24.
    PeRNA NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533PubMedCrossRefGoogle Scholar
  25. 25.
    Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon Y, Kim DW, Lee J, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han C, Munk AC, Chertkov O, Meincke L, Saunders E, Walters RA, Huq A, Nair GB, Colwell RK (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Nat Acad Sci USA 106:15442–15447PubMedCrossRefGoogle Scholar
  26. 26.
    Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329PubMedGoogle Scholar
  27. 27.
    Ivars-Martinez E, Martin-Cuadrado A-B, D’Auria G, Mira A, Ferriera S, Johnson J, Friedman R, Rodriguez-Valera F (2008) Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2:1194–1212PubMedCrossRefGoogle Scholar
  28. 28.
    Ivars-Martínez E, D’Auria G, RodrÍGuez-Valera F, Sánchez-Porro C, Ventosa A, Joint IAN, Mühling M (2008) Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Mol Ecol 17:4092–4106PubMedCrossRefGoogle Scholar
  29. 29.
    López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F (2005) Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 7:649–659PubMedCrossRefGoogle Scholar
  30. 30.
    McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA 107:16420–16427PubMedCrossRefGoogle Scholar
  31. 31.
    Shi Y, McCarren J, DeLong EF (2012) Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol 14:191–206PubMedCrossRefGoogle Scholar
  32. 32.
    Gonzaga A, Martin-Cuadrado AB, López-Pérez M, Mizuno CM, García-Heredia I, Kimes NE, Lopez-García P, Ussery D, Zaballos M, Ghai R, Rodriguez-Valera F (2012) Polyclonality of concurrent natural populations of Alteromonas macleodii. Genome Biol. doi: 10.1093/gbe/evs112
  33. 33.
    Quaiser A, López-García P, Zivanovic Y, Henn MR, Rodriguez-Valera F, Moreira D (2008) Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton. Environ Microbiol 10:2704–2717PubMedCrossRefGoogle Scholar
  34. 34.
    Edgar R (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113CrossRefGoogle Scholar
  35. 35.
    Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680CrossRefGoogle Scholar
  36. 36.
    Hemmerich C, Buechlein A, Podicheti R, Revanna KV, Dong Q (2010) An ergatis-based prokaryotic genome annotation web server. Bioinformatics 26:1122–1124PubMedCrossRefGoogle Scholar
  37. 37.
    Markham NR, Zuker M (2008) Unafold: software for nucleic acid folding and hybridization. In: Keith JM (ed) Bioinformatics, volume II. Structure, functions and applications, number 453 in Methods in Molecular Biology. Chapter I. Humana, Totowa, pp 3–31Google Scholar
  38. 38.
    Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293PubMedCrossRefGoogle Scholar
  39. 39.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M,Glöckner FO (In Press) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids ResGoogle Scholar
  40. 40.
    Soergel DA, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6:1440–1444PubMedCrossRefGoogle Scholar
  41. 41.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  42. 42.
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci USA 105:7774–7778PubMedCrossRefGoogle Scholar
  43. 43.
    Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 7:1466–1479PubMedCrossRefGoogle Scholar
  44. 44.
    Math RK, Jin HM, Kim JM, Hahn Y, Park W, Madsen EL, Jeon CO (2012) Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7:e35784PubMedCrossRefGoogle Scholar
  45. 45.
    Beman JM, Steele JA, Fuhrman JA (2011) Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California. ISME J 5:1077–1085PubMedCrossRefGoogle Scholar
  46. 46.
    Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455PubMedCrossRefGoogle Scholar
  47. 47.
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Nat Acad Sci US A 103:12115–12120CrossRefGoogle Scholar
  48. 48.
    Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J 4:642–647PubMedCrossRefGoogle Scholar
  49. 49.
    Schöttner S, Wild C, Hoffmann F, Boetius A, Ramette A (2012) Spatial scales of bacterial diversity in cold-water coral reef ecosystems. PLoS One 7:e32093PubMedCrossRefGoogle Scholar
  50. 50.
    Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow C-ET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun F, Caron DA, Fuhrman JA (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425PubMedCrossRefGoogle Scholar
  51. 51.
    Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of arctic soil microbial communities. FEMS Microbiol Ecol 82:303–315PubMedCrossRefGoogle Scholar
  52. 52.
    Kleinteich J, Wood SA, Kupper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat Clim Chang 2:356–360CrossRefGoogle Scholar
  53. 53.
    Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  54. 54.
    Nørskov-Lauritsen N (2011) Increased level of intragenomic 16S rRNA gene heterogeneity in commensal strains closely related to Haemophilus influenzae. Microbiology 157:1050–1055PubMedCrossRefGoogle Scholar
  55. 55.
    Pandey DP, Gerdes K (2005) Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976PubMedCrossRefGoogle Scholar
  56. 56.
    Kloesges T, Popa O, Martin W, Dagan T (2011) Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 28:1057–1074PubMedCrossRefGoogle Scholar
  57. 57.
    Michon A-L, Aujoulat F, Roudière L, Soulier O, Zorgniotti I, Jumas-Bilak E, Marchandin H (2010) Intragenomic and intraspecific heterogeneity in rrs may surpass interspecific variability in a natural population of Veillonella. Microbiology 156:2080–2091PubMedCrossRefGoogle Scholar
  58. 58.
    Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M (2012) Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS One 7:e42671PubMedCrossRefGoogle Scholar
  59. 59.
    Kovacs A, Yacoby K, Gophna U (2010) A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Res Microbiol 161:192–197PubMedCrossRefGoogle Scholar
  60. 60.
    Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123PubMedCrossRefGoogle Scholar
  61. 61.
    Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, Kjelleberg S (2007) Use of 16S rRNA and rpob genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288PubMedCrossRefGoogle Scholar
  62. 62.
    Vos M, Quince C, Pijl AS, de Hollander M, Kowalchuk GA (2012) A comparison of rpob and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS One 7:e30600PubMedCrossRefGoogle Scholar
  63. 63.
    García-Martínez J, Acinas SG, Antón AI, Rodríguez-Valera F (1999) Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36:55–64PubMedCrossRefGoogle Scholar
  64. 64.
    Kwon S-W, Park J-Y, Kim J-S, Kang J-W, Cho Y-H, Lim C-K, Parker MA, Lee G-B (2005) Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270PubMedCrossRefGoogle Scholar
  65. 65.
    Barry T, Colleran G, Glennon M, Dunican LK, Gannon F (1991) The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. Genome Res 1:51–56CrossRefGoogle Scholar
  66. 66.
    Cherif A, Borin S, Rizzi A, Ouzari H, Boudabous A, Daffonchio D (2003) Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. Appl Environ Microbiol 69:33–40PubMedCrossRefGoogle Scholar
  67. 67.
    Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333PubMedCrossRefGoogle Scholar
  68. 68.
    Stevenson BS, Schmidt TM (2004) Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol 70:6670–6677PubMedCrossRefGoogle Scholar
  69. 69.
    Kim H-L, Shin E-K, Kim H-M, Ryou S-M, Kim S, Cha C-J, Bae J, Lee K (2007) Heterogeneous rRNAs are differentially expressed during the morphological development of Streptomyces coelicolor. FEMS Microbiol Lett 275:146–152PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Mario López-Pérez
    • 1
  • Aitor Gonzaga
    • 1
  • Ana-Belen Martin-Cuadrado
    • 1
  • Purificación López-García
    • 2
  • Francisco Rodriguez-Valera
    • 1
  • Nikole E. Kimes
    • 1
  1. 1.Evolutionary Genomics Group, División de MicrobiologíaUniversidad Miguel HernándezSan JuanSpain
  2. 2.Unité d’Ecologie, Systématique et Evolution, CNRS, UMR8079Université Paris-Sud 11OrsayFrance

Personalised recommendations