Microbial Ecology

, Volume 65, Issue 2, pp 336–346 | Cite as

Physiologic Versatility and Growth Flexibility as the Main Characteristics of a Novel Thermoacidophilic Acidianus Strain Isolated from Copahue Geothermal Area in Argentina

  • M. Alejandra Giaveno
  • M. Sofía Urbieta
  • J. Ricardo Ulloa
  • Elena González Toril
  • Edgardo R. Donati
Environmental Microbiology


A novel thermoacidophilic archaeal strain has been isolated from three geothermal acidic hot springs in Copahue, Argentina. One of the most striking characteristic of ALE1 isolate is its metabolic versatility. It grows on sulphur, tetrathionate, iron (II) and sucrose under aerobic conditions, but it can also develop under anaerobic conditions using iron (III) or sulphur as electron acceptors and sulphur or hydrogen as electron donors autotrophically. A temperature of 75 °C and a pH between 2.5 and 3.0 are strain ALE1 optimal growth conditions, but it is able to oxidise iron (II) even at pH 1.0. Cells are irregular cocci surrounded by a regularly arrayed glycoprotein layer (S-layer). Phylogenetic analysis shows that strain ALE1 belongs to the family Sulfolobaceae in the class Thermoprotei, within the phylum Crenarchaeota. Based on 16S rRNA gene sequence similarity on NCBI database, ALE1 does not have closely related relatives, neither in culture nor uncultured, which is more surprising. Its closest related species are strains of Acidianus hospitalis (91 % of sequence similarity), Acidianus infernus (90 %), Acidianus ambivalens (90 %) and Acidianus manzanensis (90 %). Its DNA base composition of 34.5 % mol C + G is higher than that reported for other Acidianus species. Considering physiological and phylogenetic characteristics of strain ALE1, we considered it to represent a novel species of the genus Acidianus (candidatusAcidianus copahuensis”). The aim of this study is to physiologically characterise this novel archaea in order to understand its role in iron and sulphur geochemical cycles in the Copahue geothermal area and to evaluate its potential applications in bioleaching and biooxidation.


Molybdenite Tetrathionate Autotrophic Condition Acidianus Strain ALE1 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors especially thank to Dr. Wolfgang Sand who kindly allowed the use of AFM to get the images shown in Fig. 1. MINCYT-BMBF funded a fellowship for M.A. Giaveno. This work was partially supported by grants ANPCyT (PICT 0749), CONICET (PIP 0368), Universidad Nacional del Comahue and Universidad Nacional de La Plata.


  1. 1.
    Achenbach L, Woese C (1995) 16S and 23S rRNA-like primers. In: Sower KR, Schreier HJ (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 521–523Google Scholar
  2. 2.
    Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur oxidising bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  3. 3.
    Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2009) Acidophilic microorganisms from geothermal Copahue Volcano system. Assessment of biotechnological applications. Adv Mater Res 71–73:87–91CrossRefGoogle Scholar
  4. 4.
    Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2010) First assessment of acidophilic microorganisms from geothermal Copahue–Caviahue system. Hydrometallurgy 104:334–341CrossRefGoogle Scholar
  5. 5.
    Delpino DH (2009) Naturally acid Waters from Copahue volcano, Argentina. Appl Geochem 24:208–220CrossRefGoogle Scholar
  6. 6.
    Deming JW, Baross JA (1986) Solid medium for culturing black smoker bacteria at temperatures to 120 °C. Appl Environ Microbiol 51:238–243PubMedGoogle Scholar
  7. 7.
    Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker Inc, New YorkCrossRefGoogle Scholar
  8. 8.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30:783–791CrossRefGoogle Scholar
  9. 9.
    Folguera A, Ramos V (2000) Control estructural del volcán Copahue (38° S–71° O): implicancias tectónicas para el arco volcánico cuaternario (36–39° S). Rev Asoc Geol Argent 55:229–244Google Scholar
  10. 10.
    Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 1:1956–1960Google Scholar
  11. 11.
    González Díaz EF (2005) Geomorfología de la región del volcán Copahue y sus adyacencias (centro-oeste del Neuquén). Rev Asoc Geol Argent 60:72–87Google Scholar
  12. 12.
    He Z, Zhong H, Li Y (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson DB, Jameson E, Rowe OF, Wakeman K, Hallberg KB (2009) Sulfidogenesis at low pH by acidophilic bacteria and its potential for the selective recovery of transition metals from mine water. Adv Mater Res 71–73:693–696CrossRefGoogle Scholar
  14. 14.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequence. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  15. 15.
    Kletzin A (2008) Oxidation of sulfur and inorganic sulfur compounds in Acidianus ambivalens. In: Dahl C, Fredrich GC (eds) Microbial sulfur metabolism. Springer, Berlin, pp 184–200CrossRefGoogle Scholar
  16. 16.
    Krepski ST, Hanson TE, Chan CS (2012) Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environ Microbiol 14:1671–1680PubMedCrossRefGoogle Scholar
  17. 17.
    Liang CL, Xia JL, Nie ZY, Yang Y, Ma CY (2012) Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Biores Technol 110:462–467CrossRefGoogle Scholar
  18. 18.
    Lin CC, Casida LE Jr (1984) Gerlerite as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 47:427–429PubMedGoogle Scholar
  19. 19.
    Lindstrom BE, Sehlin HM (1989) High efficiency of plating of the thermophilic sulfur-dependent archaebacterium Sulfolobus acidocaldarius. Appl Environ Microbiol 55:3020–3021PubMedGoogle Scholar
  20. 20.
    Mardanov AV, Gumerov VM, Beletsky AV, Perevalova AA, Karpov GA, Bonch-Osmolovskaya EA, Ravin NV (2011) Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka. Extrem 15:365–372CrossRefGoogle Scholar
  21. 21.
    Mas G, Mas L, Bengochea L (1996) Alteración ácido-sulfática en el campo geotérmico Copahue, Provincia de Neuquén. Rev Asoc Geol Argent 51:78–86Google Scholar
  22. 22.
    Monasterio AM (2008) Termas de Copahue. Balnea 4:151–163Google Scholar
  23. 23.
    Ochsenreiter T, Drazenka S, Quaiser A, Bonch-Osmolovskaya L, Scleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797PubMedCrossRefGoogle Scholar
  24. 24.
    Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444PubMedCrossRefGoogle Scholar
  25. 25.
    Plumb J, Haddad CM, Gibson JA, Franzmann PD (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423PubMedCrossRefGoogle Scholar
  26. 26.
    Rawlings DE (1995) Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. In: Jerez JCA, Vargas T, Toledo H, Wiertz JV (eds) Proceedings of the International Biohydrometallurgy Symposium, IBS-95, vol.1. University of Chile, Santiago de Chile, pp 343–350Google Scholar
  27. 27.
  28. 28.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction of phylogenetic trees. Molec Biol Evol 4:406–425PubMedGoogle Scholar
  29. 29.
    Segerer A, Neuner AM, Kristjansson JK, Stetter K (1986) Acidianus infernus gen. nov. sp. nov. and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564CrossRefGoogle Scholar
  30. 30.
    Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 6:253–260CrossRefGoogle Scholar
  31. 31.
    Tamura K, Peterson D, Peterson NJ, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  32. 32.
    Taniuchi Y, Chen YL, Chen HY, Tsai ML, Ohki K (2012) Isolation and characterization of the unicellular diazotrophic cyanobacterium Group C TW3 from the tropical western Pacific Ocean. Environ Microbiol 14:641–654PubMedCrossRefGoogle Scholar
  33. 33.
    Tupikina OV, Ngoma IE, Minnaar S, Harrison STL (2011) Some aspects of the effect of pH and acid stress in heap bioleaching. Miner Eng 24:1209–1214CrossRefGoogle Scholar
  34. 34.
    Urbieta MS, González Toril E, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina. Microb Ecol 64:91–104PubMedCrossRefGoogle Scholar
  35. 35.
    Varekamp D, Maartende Moor J, Merrill M, Colvin A, Goss A, Vroon P (2006) Geochemistry and isotopic characteristics of the Caviahue–Copahue volcanic complex, Province of Neuquen, Argentina. Geol Soc Am Spec Pap 407:317–342Google Scholar
  36. 36.
    Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M (2006) Acidianus manzaensis sp.nov., a novel thermoociphic archaeon growing authophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Alejandra Giaveno
    • 1
  • M. Sofía Urbieta
    • 2
    • 4
  • J. Ricardo Ulloa
    • 1
  • Elena González Toril
    • 3
  • Edgardo R. Donati
    • 2
  1. 1.IDEPA (CCT Comahue-CONICET–UNCo), Dpto. Química, Facultad de IngenieríaUniversidad Nacional del ComahueBuenos AiresArgentina
  2. 2.CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Centro de Astrobiología, Instituto Nacional de Técnica AeroespacialMadridSpain
  4. 4.La PlataArgentina

Personalised recommendations