Advertisement

Microbial Ecology

, Volume 65, Issue 2, pp 311–324 | Cite as

Culture-Dependent and Independent Studies of Microbial Diversity in Highly Copper-Contaminated Chilean Marine Sediments

  • Ludovic BesauryEmail author
  • Florence Marty
  • Sylvaine Buquet
  • Valérie Mesnage
  • Gerard Muyzer
  • Laurent Quillet
Environmental Microbiology

Abstract

Cultivation and molecular-based approaches were used to study microbial diversity in two Chilean marine sediments contaminated with high (835 ppm) and very high concentrations of copper (1,533 ppm). The diversity of cultivable bacteria resistant to copper was studied at oxic and anoxic conditions, focusing on sulfate-, thiosulfate-, and iron-reducing bacteria. For both sediments, the cultivable bacteria isolated at oxic conditions were mostly affiliated to the genus Bacillus, while at anoxic conditions the majority of the cultivable bacteria found were closely related to members of the genera Desulfovibrio, Sphingomonas, and Virgibacillus. Copper resistance was between 100 and 400 ppm, with the exception of a strain affiliated to members of the genus Desulfuromonas, which was resistant up to 1,000 ppm of copper. In parallel, cloning and sequencing of 16S rRNA was performed to study the total bacterial diversity in the sediments. A weak correlation was observed between the isolated strains and the 16S rRNA operational taxonomic units detected. The presence of copper resistance genes (copA, cusA, and pcoA) was tested for all the strains isolated; only copA was detected in a few isolates, suggesting that other copper resistance mechanisms could be used by the bacteria in those highly copper-contaminated sediments.

Keywords

Total Organic Carbon Sediment Core Clone Library Actinobacteria Terminal Restriction Fragment Length Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the International ECOS program (n° C06B05) and the ECCO French research program “MISECHICUI.” We thank Dilys Moscato for the help with the English. We thank Ben Abbas for the technical support.

Supplementary material

248_2012_120_MOESM1_ESM.doc (114 kb)
ESM 1 (DOC 113 kb)

References

  1. 1.
    Albarracin V, Amoroso M, Abate C (2005) Isolation and characterization of indigenous copper-resistant actinomycete strains. Chemie der Erde-Geochemistry 65:145–156CrossRefGoogle Scholar
  2. 2.
    Albarracin VH, Alonso-Vega P, Trujillo ME, Amoroso MJ, Abate CM (2010) Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments. Int J Syst Evol Microbiol 60:397–401PubMedCrossRefGoogle Scholar
  3. 3.
    Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. 4.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  5. 5.
    Andreazza R, Okeke BC, Pieniz S, Camargo FAO (2012) Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption. Biol Trace Elem Res 146(1):107–115PubMedCrossRefGoogle Scholar
  6. 6.
    Ankley GT, Mattson VR, Leonard EN, West CW, Bennett JL (1993) Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid volatile sulfide. Environ Toxicol Chem 12:315–320CrossRefGoogle Scholar
  7. 7.
    Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landforms 26:1237–1248CrossRefGoogle Scholar
  8. 8.
    Burns D, Camakaris H, Janssen P, Dyall-Smith M (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedCrossRefGoogle Scholar
  9. 9.
    Cabrera G, Pérez R, Gomez J, Abalos A, Cantero D (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater 135:40–46PubMedCrossRefGoogle Scholar
  10. 10.
    Cho KH, Hong SG, Cho HH et al (2008) Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 58:1300–1303PubMedCrossRefGoogle Scholar
  11. 11.
    Correa JA, Castilla JC, Ramírez M et al (1999) Copper, copper mine tailings and their effect on marine algae in northern Chile. J Appl Phycol 11:57–67CrossRefGoogle Scholar
  12. 12.
    De la Iglesia R, Valenzuela-Heredia D, Pavissich J et al (2010) Novel polymerase chain reaction primers for the specific detection of bacterial copper P-type ATPases gene sequences in environmental isolates and metagenomic DNA. Lett Appl Microbiol 50:552–562PubMedCrossRefGoogle Scholar
  13. 13.
    De Leij F, Whipps J, Lynch J (1994) The use of colony development for the characterization of bacterial communities in soil and on roots. Microb Ecol 27:81–97CrossRefGoogle Scholar
  14. 14.
    Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977PubMedGoogle Scholar
  15. 15.
    ETBW (2002) Environment, transport and work bureau technical circular. Management of dredged/excavated sediment No. 34Google Scholar
  16. 16.
    Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804PubMedCrossRefGoogle Scholar
  17. 17.
    Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279PubMedCrossRefGoogle Scholar
  18. 18.
    Gough HL, Stahl DA (2010) Microbial community structures in anoxic freshwater lake sediment along a metal contamination gradient. ISME J 5:543–558PubMedCrossRefGoogle Scholar
  19. 19.
    Halliwell B, Gutteridge J (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1PubMedGoogle Scholar
  20. 20.
    Hammer Ø, Harper T, Ryan D (2001) PAST: paleontological statistics software education and data analysis. Paleontologia Electronica. 4:9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  21. 21.
    Head I, Saunders J, Pickup R (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35(1):1–21PubMedCrossRefGoogle Scholar
  22. 22.
    Jin S, Drever JI, Colberg PJS (2007) Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments. Environ Toxicol Chem 26:225–230PubMedCrossRefGoogle Scholar
  23. 23.
    Karnachuk OV, Kurochkina SY, Nicomrat D et al (2003) Copper resistance in Desulfovibrio strain R2. Antonie van Leeuwenhoek 83:99–106PubMedCrossRefGoogle Scholar
  24. 24.
    Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61:2172–2179PubMedGoogle Scholar
  25. 25.
    Kiikkila O, Pennanen T, Perkiömäki J, Derome J, Fritze H (2002) Organic material as a copper immobilising agent: a microcosm study on remediation. Basic Appl Ecol 3:245–253CrossRefGoogle Scholar
  26. 26.
    Kulichevskaya IS, Ivanova AO, Baulina OI et al (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193PubMedCrossRefGoogle Scholar
  27. 27.
    Kuwae T, Hosokawa Y (1999) Determination of abundance and biovolume of bacteria in sediments by dual staining with 4′, 6-diamidino-2-phenylindole and acridine orange: relationship to dispersion treatment and sediment characteristics. Appl Environ Microbiol 65:3407–3412PubMedGoogle Scholar
  28. 28.
    Labrenz M, Druschel GK, Thomsen-Ebert T et al (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747PubMedCrossRefGoogle Scholar
  29. 29.
    Lee SM, Grass G, Rensing C et al (2002) The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 295:616–620PubMedCrossRefGoogle Scholar
  30. 30.
    Lejon DPH, Nowak V, Bouko S et al (2007) Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Microbiol Ecol 61:424–437PubMedCrossRefGoogle Scholar
  31. 31.
    Lejon DPH, Martins JMF, Lévêque J et al (2008) Copper dynamics and impact on microbial communities in soils of variable organic status. Environ Sci Technol 42:2819–2825PubMedCrossRefGoogle Scholar
  32. 32.
    Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522PubMedGoogle Scholar
  33. 33.
    Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253PubMedCrossRefGoogle Scholar
  34. 34.
    Macnaughton S, Stephen JR, Chang YJ et al (1999) Characterization of metal-resistant soil eubacteria by polymerase chain reaction-denaturing gradient gel electrophoresis with isolation of resistant strains. Can J Microbiol 45:116–124PubMedCrossRefGoogle Scholar
  35. 35.
    Malik A, Jaiswal R (2000) Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World J Microbiol Biotechnol 16:177–182CrossRefGoogle Scholar
  36. 36.
    Margesin R, Plaza GA, Kasenbacher S (2011) Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82:1583–1588PubMedCrossRefGoogle Scholar
  37. 37.
    Martinez RJ, Wang Y, Raimondo MA et al (2006) Horizontal gene transfer of PIB-type ATPases among bacteria isolated from radionuclide-and metal-contaminated subsurface soils. Appl Environ Microbiol 72:3111–3118PubMedCrossRefGoogle Scholar
  38. 38.
    Martins M, Faleiro ML, Barros RJ et al (2009) Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J Hazard Mater 166:706–713PubMedCrossRefGoogle Scholar
  39. 39.
    Moran AC, Hengst MB, De la Iglesia R et al (2008) Changes in bacterial community structure associated with coastal copper enrichment. Environ Toxicol Chem 27:2239–2245PubMedCrossRefGoogle Scholar
  40. 40.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  41. 41.
    Naz N, Young HK, Ahmed N, Gadd GM (2005) Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 71:4610–4618PubMedCrossRefGoogle Scholar
  42. 42.
    Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848PubMedCrossRefGoogle Scholar
  43. 43.
    Pavissich JP, Silva M, Gonzalez B (2010) Sulfate reduction, molecular diversity, and copper amendment effects in bacterial communities enriched from sediments exposed to copper mining residues. Environ Toxicol Chem 29:256–264PubMedCrossRefGoogle Scholar
  44. 44.
    Quillet L, Besaury L, Popova M, Paissé S, Deloffre J, Ouddane B (2011) Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK). Mar Biotechnol NY 14(3):363–381PubMedCrossRefGoogle Scholar
  45. 45.
    Ranjard L, Echairi A, Nowak V et al (2006) Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiol Ecol 58:303–315PubMedCrossRefGoogle Scholar
  46. 46.
    Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu (I)-translocating P-type ATPase. Proc Natl Acad Sci 97:652PubMedCrossRefGoogle Scholar
  47. 47.
    Sandaa RA, Torsvik V, Enger Ø (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295CrossRefGoogle Scholar
  48. 48.
    Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. Meth Microbiol 30:425–468CrossRefGoogle Scholar
  49. 49.
    Schmidt JL, Deming JW, Jumars PA, Keil RG (1998) Constancy of bacterial abundance in surficial marine sediments. Limnol Oceanogr 43(5):976–982CrossRefGoogle Scholar
  50. 50.
    Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876PubMedGoogle Scholar
  51. 51.
    Simpson SL, Apte SC, Batley GE (2000) Effect of short-term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments. Environ Sci Technol 34:4533–4537CrossRefGoogle Scholar
  52. 52.
    Smit E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23:249–261CrossRefGoogle Scholar
  53. 53.
    Sorci JJ, Paulauskis JD, Ford TE (1999) 16S rRNA restriction fragment length polymorphism analysis of bacterial diversity as a biomarker of ecological health in polluted sediments from New Bedford Harbor, Massachusetts, USA. Mar Pollut Bull 38:663–675CrossRefGoogle Scholar
  54. 54.
    Sun LN, Zhang YF, He LY et al (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509PubMedCrossRefGoogle Scholar
  55. 55.
    Takematsu N (1979) Sorption of transition metals on manganese and iron oxides, and silicate minerals. J Oceanogr 35:36–42Google Scholar
  56. 56.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  57. 57.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  58. 58.
    Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124PubMedCrossRefGoogle Scholar
  59. 59.
    Truper H, Schlegel H (1964) Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238CrossRefGoogle Scholar
  60. 60.
    Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338PubMedGoogle Scholar
  61. 61.
    Vaxevanidou K, Papassiopi N, Paspaliaris I (2008) Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere 70:1329–1337PubMedCrossRefGoogle Scholar
  62. 62.
    Vilchez R, Pozo C, Gómez M, Rodelas B, González-López J (2007) Dominance of sphingomonads in a copper-exposed biofilm community for groundwater treatment. Microbiology 153:325–337PubMedCrossRefGoogle Scholar
  63. 63.
    Vullo DL, Ceretti HM, Daniel MA, Ramírez SAM, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresour Technol 99:5574–5581PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ludovic Besaury
    • 1
    Email author
  • Florence Marty
    • 2
  • Sylvaine Buquet
    • 4
  • Valérie Mesnage
    • 1
  • Gerard Muyzer
    • 2
    • 3
  • Laurent Quillet
    • 4
  1. 1.UMR CNRS 6143 M2C—groupe MicrobiologieUniversité de RouenRouenFrance
  2. 2.Environmental Biotechnology, Department of BiotechnologyUniversity of Technology of DelftDelftThe Netherlands
  3. 3.Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Laboratoire Universitaire MEB “Microbiologie Environnementale et Biologie Evolutive”Rouen cedexFrance

Personalised recommendations