Microbial Ecology

, Volume 65, Issue 1, pp 197–204 | Cite as

Microbial Community Diversity in the Gut of the South American Termite Cornitermes cumulans (Isoptera: Termitidae)

  • Maria Angela B. Grieco
  • Janaina J. V. Cavalcante
  • Alexander M. Cardoso
  • Ricardo P. Vieira
  • Ednildo A. Machado
  • Maysa M. Clementino
  • Marcelo N. Medeiros
  • Rodolpho M. Albano
  • Eloi S. Garcia
  • Wanderley de Souza
  • Reginaldo Constantino
  • Orlando B. Martins
Invertebrate Microbiology

Abstract

Termites inhabit tropical and subtropical areas where they contribute to structure and composition of soils by efficiently degrading biomass with aid of resident gut microbiota. In this study, culture-independent molecular analysis was performed based on bacterial and archaeal 16S rRNA clone libraries to describe the gut microbial communities within Cornitermes cumulans, a South American litter-feeding termite. Our data reveal extensive bacterial diversity, mainly composed of organisms from the phyla Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and Fibrobacteres. In contrast, a low diversity of archaeal 16S rRNA sequences was found, comprising mainly members of the Crenarchaeota phylum. The diversity of archaeal methanogens was further analyzed by sequencing clones from a library for the mcrA gene, which encodes the enzyme methyl coenzyme reductase, responsible for catalyzing the last step in methane production, methane being an important greenhouse gas. The mcrA sequences were diverse and divided phylogenetically into three clades related to uncultured environmental archaea and methanogens found in different termite species. C. cumulans is a litter-feeding, mound-building termite considered a keystone species in natural ecosystems and also a pest in agriculture. Here, we describe the archaeal and bacterial communities within this termite, revealing for the first time its intriguing microbiota.

Supplementary material

248_2012_119_MOESM1_ESM.pdf (144 kb)
ESM 1(PDF 143 kb)

References

  1. 1.
    Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, pp 389–407Google Scholar
  2. 2.
    Engel M, Grimaldi D, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27CrossRefGoogle Scholar
  3. 3.
    Ohkuma M (2003) Termite symbiotic system: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9PubMedGoogle Scholar
  4. 4.
    Hackstein JHP, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci U S A 91:5441–5445PubMedCrossRefGoogle Scholar
  5. 5.
    Sanderson MG (1996) Biomass of termites and their emissions of methane and carbon dioxide: a global database. Global Biogeochem Cycles 10:543–557CrossRefGoogle Scholar
  6. 6.
    Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol 44:231–242PubMedCrossRefGoogle Scholar
  7. 7.
    Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  8. 8.
    Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termite. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  9. 9.
    Redford K (1984) The termitaria of Cornitermes cumulans (Isoptera, Termitidae) and their role in determining a potential keystone species. Biotropica 16:112–119CrossRefGoogle Scholar
  10. 10.
    Constantino R (2002) The pest termites of South America: taxonomy, distribution and status. J Appl Entomol 126:355–365CrossRefGoogle Scholar
  11. 11.
    Turque AS, Batista D, Silveira CB et al (2010) Environmental shaping of sponge-associated archaeal communities. PLoS One 5:e15774PubMedCrossRefGoogle Scholar
  12. 12.
    Luton PE, Wayne JM, Sharp RJ et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530PubMedGoogle Scholar
  13. 13.
    Ashelford KE, Chuzhanova NA, Fry JC et al (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  15. 15.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  16. 16.
    Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  17. 17.
    Breznak JA (2000) Ecology of prokaryotic microbes in the guts of woodland litter-feeding termites. In: Abe T, Higashi M, Bignell D (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 209–232Google Scholar
  18. 18.
    Brauman A, Dore J, Eggleton P et al (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36PubMedCrossRefGoogle Scholar
  19. 19.
    Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325PubMedCrossRefGoogle Scholar
  20. 20.
    Brune A, Emerson D, Breznack JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradient in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687PubMedGoogle Scholar
  21. 21.
    Wang Q, Garrity GM, Tiedje J, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCrossRefGoogle Scholar
  22. 22.
    Hongoh Y, Deevong P, Inoue T et al (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599PubMedCrossRefGoogle Scholar
  23. 23.
    Nakajima H, Hongoh Y, Usami R et al (2005) Spatial distribution of bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community colonizing the gut epithelium. FEMS Microbiol Ecol 54:247–255PubMedCrossRefGoogle Scholar
  24. 24.
    Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first Spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320PubMedCrossRefGoogle Scholar
  25. 25.
    Noda S, Hongoh Y, Sato T et al (2009) Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9:158PubMedCrossRefGoogle Scholar
  26. 26.
    McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618PubMedCrossRefGoogle Scholar
  27. 27.
    Dorador C, Vila I, Remonsellez F et al (2010) Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol Ecol 73:291–302PubMedGoogle Scholar
  28. 28.
    Chin K, Lukow T, Stubner S et al (1999) Structure and function of the methanogenic archaeal community in stable cellulose-degrading enrichment cultures at two different temperatures (15 and 30 degrees C). FEMS Microbiol Ecol 30:313–326PubMedGoogle Scholar
  29. 29.
    Friedrich MW, Schmitt-Wagner D, Lueders T et al (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890PubMedCrossRefGoogle Scholar
  30. 30.
    Brune A, Ohkuma O (2011) Role of the termite gut microbiota in symbiotic digestion. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475Google Scholar
  31. 31.
    Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80PubMedCrossRefGoogle Scholar
  32. 32.
    Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedGoogle Scholar
  33. 33.
    Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292PubMedCrossRefGoogle Scholar
  34. 34.
    Odelson DA, Breznak JA (1985) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maria Angela B. Grieco
    • 1
    • 8
  • Janaina J. V. Cavalcante
    • 1
  • Alexander M. Cardoso
    • 1
  • Ricardo P. Vieira
    • 2
  • Ednildo A. Machado
    • 3
  • Maysa M. Clementino
    • 4
  • Marcelo N. Medeiros
    • 1
  • Rodolpho M. Albano
    • 6
  • Eloi S. Garcia
    • 1
    • 5
  • Wanderley de Souza
    • 1
    • 3
  • Reginaldo Constantino
    • 7
  • Orlando B. Martins
    • 2
  1. 1.Diretoria de Programa - DIPROInstituto Nacional de Metrologia, Qualidade e Tecnologia -INMETRORio de JaneiroBrazil
  2. 2.Instituto de Bioquímica MédicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  4. 4.Instituto Nacional de Controle de Qualidade em SaúdeFundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil
  5. 5.Instituto Oswaldo CruzFundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil
  6. 6.Departamento de BioquímicaUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  7. 7.Instituto de Ciências Biológicas, Departamento de ZoologiaUniversidade de Brasília (UNB)BrasiliaBrazil
  8. 8.Instituto Nacional de Metrologia, Qualidade e TecnologiaDiretoria de Programa-DIPRORio de JaneiroBrazil

Personalised recommendations