Microbial Ecology

, Volume 65, Issue 1, pp 255–267 | Cite as

Revised Systematics of Holospora-Like Bacteria and Characterization of “Candidatus Gortzia infectiva”, a Novel Macronuclear Symbiont of Paramecium jenningsi

  • Vittorio Boscaro
  • Sergei I. Fokin
  • Martina Schrallhammer
  • Michael Schweikert
  • Giulio PetroniEmail author
Host Microbe Interactions


The genus Holospora (Rickettsiales) includes highly infectious nuclear symbionts of the ciliate Paramecium with unique morphology and life cycle. To date, nine species have been described, but a molecular characterization is lacking for most of them. In this study, we have characterized a novel Holospora-like bacterium (HLB) living in the macronuclei of a Paramecium jenningsi population. This bacterium was morphologically and ultrastructurally investigated in detail, and its life cycle and infection capabilities were described. We also obtained its 16S rRNA gene sequence and developed a specific probe for fluorescence in situ hybridization experiments. A new taxon, “Candidatus Gortzia infectiva”, was established for this HLB according to its unique characteristics and the relatively low DNA sequence similarities shared with other bacteria. The phylogeny of the order Rickettsiales based on 16S rRNA gene sequences has been inferred, adding to the available data the sequence of the novel bacterium and those of two Holospora species (Holospora obtusa and Holospora undulata) characterized for the purpose. Our phylogenetic analysis provided molecular support for the monophyly of HLBs and showed a possible pattern of evolution for some of their features. We suggested to classify inside the family Holosporaceae only HLBs, excluding other more distantly related and phenotypically different Paramecium endosymbionts.


Uncultured Bacterium Bacterial Symbiont Restriction Fragment Length Polymorphism Pattern Magnetospirillum Paramecium Bursaria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Ms. T. Fokina for the lucky sampling in Thailand, Prof. E. Przyboś for the P. quadecaurelia identification, Prof. O. Kaltz for providing the P. caudatum cultures and the anonymous reviewers who gave very useful advices, improving the quality of this paper. S. Gabrielli is gratefully acknowledged for technical assistance in graphic artwork. This work was supported by PRIN fellowship (protocol 2008TRZSXF_002) from the Italian Research Ministry (MIUR), the Volkswagen foundation (project number: 84816), the European Commission FP7-PEOPLE-2009-IRSES project CINAR PATHOBACTER (247658) and the support actions for international academic cooperation of Pisa University (years 2011/2012).


  1. 1.
    Eschbach E, Pfannkuchen M, Schweikert M, Drutschmann D, Brümmer F, Fokin SI, Ludwig W, Görtz HD (2009) “Candidatus Paraholospora nucleivisitans”, an intracellular bacterium in Paramecium sexaurelia shuttles between the cytoplasm and the nucleus of its host. Syst Appl Microbiol 32:490–500CrossRefPubMedGoogle Scholar
  2. 2.
    Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F, Görtz HD, Verni F, Petroni G (2009) “Candidatus Cryptoprodotis polytropus”, a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 56:119–129CrossRefPubMedGoogle Scholar
  3. 3.
    Fokin SI (2012) Frequency and biodiversity of symbionts in representatives of the main classes of Ciliophora. Eur J Protistol 48:138–148CrossRefPubMedGoogle Scholar
  4. 4.
    Irbis C, Ushida K (2004) Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 50:203–212CrossRefPubMedGoogle Scholar
  5. 5.
    Petroni G, Spring S, Schleifer KH, Verni F, Rosati G (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci U S A 97:1813–1817CrossRefPubMedGoogle Scholar
  6. 6.
    Rinke C, Schmitz-Esser S, Loy A, Horn M, Wagner M, Bright M (2009) High genetic similarity between two geographically distinct strains of the sulfur-oxidising symbiont “Candidatus Thiobios zoothamnicoli”. FEMS Microbiol Ecol 67:229–241CrossRefPubMedGoogle Scholar
  7. 7.
    Rinke C, Schmitz-Esser S, Stoecker K, Nussbaumer AD, Molnár DA, Vanura K, Wagner M, Horn M, Ott JA, Bright M (2006) “Candidatus Thiobios zoothamnicoli”, an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 72:2014–2021CrossRefPubMedGoogle Scholar
  8. 8.
    Schrallhammer M, Fokin SI, Schleifer KH, Petroni G (2006) Molecular characterization of the obligate endosymbiont “Caedibacter macronucleorum” Fokin and Görtz, 1993 and of its host Paramecium duboscqui strain Ku4-8. J Eukaryot Microbiol 53:499–506CrossRefPubMedGoogle Scholar
  9. 9.
    Schrallhammer M, Schweikert M, Vallesi A, Verni F, Petroni G (2011) Detection of a novel subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi. Microb Ecol 61:455–464CrossRefPubMedGoogle Scholar
  10. 10.
    Shinzato N, Watanabe I, Meng XY, Sekiguchi Y, Tamaki H, Matsui T, Kamagata Y (2007) Phylogenetic analysis and fluorescence in situ hybridization detection of archaeal and bacterial endosymbionts in the anaerobic ciliate Trimyema compressum. Microb Ecol 54:627–636CrossRefPubMedGoogle Scholar
  11. 11.
    Sun HY, Noe J, Barber J, Coyne RS, Cassidy-Hanley D, Clark TG, Findly RC, Dickerson HW (2009) Endosymbiotic bacteria in the parasitic ciliate Ichthyophthirius multifiliis. Appl Environ Microbiol 75:7445–7452CrossRefPubMedGoogle Scholar
  12. 12.
    Vannini C, Ferrantini F, Ristori A, Verni F, Petroni G (2012) Betaproteobacterial symbionts of the ciliate Euplotes: origin and tangled evolutionary path of an obligate microbial association. Environ Microbiol. doi: 10.1111/j.1462-2920.2012.02760.x
  13. 13.
    Vannini C, Ferrantini F, Schleifer KH, Ludwig W, Verni F, Petroni G (2010) “Candidatus Anadelfobacter veles” and “Candidatus Cyrtobacter comes”, two new Rickettsiales species hosted by the protist ciliate Euplotes harpa (Ciliophora, Spirotrichea). Appl Environ Microbiol 76:4047–4054CrossRefPubMedGoogle Scholar
  14. 14.
    Vannini C, Petroni G, Verni F, Rosati G (2005) A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). Microb Ecol 49:434–442CrossRefPubMedGoogle Scholar
  15. 15.
    Vannini C, Rosati G, Verni F, Petroni G (2004) Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of “Candidatus Devosia euplotis”. Int J Syst Evol Microbiol 54:1151–1156CrossRefPubMedGoogle Scholar
  16. 16.
    Fokin SI (2004) Bacterial endocytobionts of Ciliophora and their interactions with the host cell. Int Rev Cytol 236:181–249CrossRefPubMedGoogle Scholar
  17. 17.
    Görtz HD (1996) Symbiosis in ciliates. In: Hausmann K, Bradbury PS (eds) Ciliates. Cells as organisms. Fisher, Stuttgart, pp 441–462Google Scholar
  18. 18.
    Görtz HD (2006) Symbiotic associations between ciliates and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 1, 3rd edn. Springer, New York, pp 364–402CrossRefGoogle Scholar
  19. 19.
    Görtz HD, Fokin SI (2009) Diversity of endosymbiotic bacteria in Paramecium. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 131–160CrossRefGoogle Scholar
  20. 20.
    Vannini C, Petroni G, Schena A, Verni F, Rosati G (2003) Well-established mutualistic associations between ciliates and prokaryotes might be more widespread and diversified than so far supposed. Eur J Protistol 39:481–485CrossRefGoogle Scholar
  21. 21.
    Duncan AB, Fellous S, Kaltz O (2011) Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations. Proc R Soc B 278:3412–3420CrossRefPubMedGoogle Scholar
  22. 22.
    Fellous S, Quillery E, Duncan AB, Kaltz O (2011) Parasitic infection reduces dispersal of ciliate host. Biol Lett 7:327–329CrossRefPubMedGoogle Scholar
  23. 23.
    Fels D, Kaltz O (2006) Temperature-dependent transmission and latency of Holospora undulata, a micronucleus-specific parasite of the ciliate Paramecium caudatum. Proc R Soc B 273:1031–1038CrossRefPubMedGoogle Scholar
  24. 24.
    Kusch J, Czubatinsky L, Wegmann S, Hübner M, Alter M, Albrecht P (2002) Competitive advantages of Caedibacter-infected paramecia. Protist 153:47–58CrossRefPubMedGoogle Scholar
  25. 25.
    Vannini C, Lucchesi S, Rosati G (2007) Polynucleobacter: symbiotic bacteria in ciliates compensate for a genetic disorder in glycogenolysis. Symbiosis 44:85–91Google Scholar
  26. 26.
    Vannini C, Pöckl M, Petroni G, Wu QL, Lang E, Stackebrandt E, Schrallhammer M, Richardson PM, Hahn MW (2007) Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 9:347–359CrossRefPubMedGoogle Scholar
  27. 27.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  28. 28.
    Amann RI, Springer N, Ludwig W, Görtz HD, Schleifer KH (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164CrossRefPubMedGoogle Scholar
  29. 29.
    Fokin SI, Görtz HD (2009) Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 161–199CrossRefGoogle Scholar
  30. 30.
    Görtz HD, Schmidt HJ (2005) Holosporaceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol II, part C. Springer, New York, pp 146–160Google Scholar
  31. 31.
    Gromov BV, Ossipov DV (1981) Holospora (ex Hafkine 1890) nom. rev., a genus of bacteria inhabiting the nuclei of paramecia. Int J Syst Bacteriol 31:348–352CrossRefGoogle Scholar
  32. 32.
    Hafkine MW (1890) Maladies infectieuses des paramécies. Ann Inst Pasteur Paris 4:363–379Google Scholar
  33. 33.
    Preer JR, Preer LB (1982) Revival of names of protozoan endosymbionts and proposal of Holospora caryophila nom. nov. Int J Syst Bacteriol 32:140–141CrossRefGoogle Scholar
  34. 34.
    Fokin SI (2000) Host specificity of Holospora and its relationships with Paramecium phylogeny. Jpn J Protozool 33:94Google Scholar
  35. 35.
    Hori M, Fujii K, Fujishima M (2008) Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 55:515–521CrossRefPubMedGoogle Scholar
  36. 36.
    Hori M, Fujishima M (2003) The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 50:293–298CrossRefPubMedGoogle Scholar
  37. 37.
    Smurov AO, Fokin SI (1998) Resistance of some stocks of ciliate Paramecium caudatum infected with endonuclear bacteria Holospora against salinity impact. Proc Zool Inst RAS 276:175–178Google Scholar
  38. 38.
    Fujishima M, Hoshide K (1988) Light and electron microscopic observations of Holospora obtusa: a macronucleus-specific bacterium of the ciliate Paramecium caudatum. Zool Sci 5:791–799Google Scholar
  39. 39.
    Fujishima M, Sawabe H, Iwatsuki K (1990) Scanning electron microscopic observations of differentiation from the reproductive short form to the infectious long form of Holospora obtusa. J Protozool 37:123–128Google Scholar
  40. 40.
    Görtz HD, Ahlers N, Robenek H (1989) Ultrastructure of the infectious and reproductive forms of Holospora obtusa, a bacterium infecting the macronucleus of Paramecium caudatum. J Gen Microbiol 135:3079–3085Google Scholar
  41. 41.
    Görtz HD, Dieckmann J (1980) Life cycle and infectivity of Holospora elegans Haffkine, a micronucleus-specific symbiont of Paramecium caudatum (Ehrenberg). Protistologica 16:591–603Google Scholar
  42. 42.
    Dohra H, Fujishima M (1999) Cell structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zool Sci 16:93–98CrossRefGoogle Scholar
  43. 43.
    Iwatani K, Dohra H, Lang BF, Burger G, Hori M, Fujishima M (2005) Translocation of an 89-kDa periplasmic protein is associated with Holospora infection. Biochem Biophys Res Commun 337:1198–1205CrossRefPubMedGoogle Scholar
  44. 44.
    Fujishima M (2009) Infection and maintenance of Holospora species in Paramecium caudatum. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 201–225CrossRefGoogle Scholar
  45. 45.
    Wiemann M, Görtz HD (1989) Release of the endonucleobiotic bacterium Holospora elegans from its host cell Paramecium caudatum. Eur J Protistol 25:100–108CrossRefPubMedGoogle Scholar
  46. 46.
    Fujishima M, Kawai M (1997) Acidification in digestive vacuoles is an early event required for Holospora infection of Paramecium nucleus. In: Achenk HEA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis. Springer, Berlin, pp 367–370CrossRefGoogle Scholar
  47. 47.
    Sabaneyeva EV, Derkacheva ME, Benken KA, Fokin SI, Vainio S, Skovorodkin IN (2009) Actin-based mechanism of Holospora obtusa trafficking in Paramecium caudatum. Protist 160:205–219CrossRefPubMedGoogle Scholar
  48. 48.
    Sabaneyeva EV, Fokin SI, Gavrilova EV, Kornilova ES (2005) Nocodazole inhibits macronuclear infection with Holospora obtusa in Paramecium caudatum. Protoplasma 226:147–153CrossRefPubMedGoogle Scholar
  49. 49.
    Fokin SI, Brigge T, Brenner J, Görtz HD (1996) Holospora species infecting the nuclei of Paramecium appear to belong into two groups of bacteria. Eur J Protistol 32:19–24CrossRefGoogle Scholar
  50. 50.
    Fokin SI, Sabaneyeva EV (1997) Release of endonucleobiotic bacteria Holospora bacillata and Holospora curvata from the macronucleus of their host cells Paramecium woodruffi and Paramecium calkinsi. Endocyt Cell Res 12:49–55Google Scholar
  51. 51.
    Vakkerov-Kouzova ND, Rautian MS (2011) Obtaining and characterization of “Holospora curviuscula” and Holospora obtusa, bacterial symbionts of the macronuclei of Paramecium bursaria and Paramecium caudatum. Microbiology 80:728–732CrossRefGoogle Scholar
  52. 52.
    Schrallhammer M, Schweikert M (2009) The killer effect of Paramecium and its causative agents. In: Fujishima M (ed) Endosymbionts in Paramecium. Microbiology Monograph, Münster, pp 227–246CrossRefGoogle Scholar
  53. 53.
    Birtles RJ, Rowbotham TJ, Michel R, Pitcher DG, Lascola B, Alexiou-Daniel S, Raoult D (2000) “Candidatus Odyssella thessalonicensis” gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int J Syst Evol Microbiol 50:63–72CrossRefPubMedGoogle Scholar
  54. 54.
    Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol 1:357–367CrossRefPubMedGoogle Scholar
  55. 55.
    Przyboś E, Fokin S, Stoeck T, Schmidt HJ (1999) Occurrence and ecology of Paramecium jenningsi strains. Folia Biol–Krakow 47:53–59Google Scholar
  56. 56.
    Wichterman R (1953) The biology of Paramecium. McGraw-Hill, New York, p 527Google Scholar
  57. 57.
    Skovorodkin IN (1990) A device for immobilizing biological objects in the light microscope studies. Tsitologiya 32:301–302, In Russian with English summaryGoogle Scholar
  58. 58.
    Fokin SI (1997) Morphological diversity of the micronuclei in Paramecium. Arch Protistenkd 148:375–387CrossRefGoogle Scholar
  59. 59.
    Fokin SI (2010/2011) Paramecium genus: biodiversity, some morphological features and the key to the main morphospecies discrimination. Protistology 6:227–235Google Scholar
  60. 60.
    Preer LB (1969) Alpha, an infectious macronuclear symbiont of Paramecium aurelia. J Protozool 16:570–578PubMedGoogle Scholar
  61. 61.
    Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008CrossRefPubMedGoogle Scholar
  62. 62.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  63. 63.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196CrossRefPubMedGoogle Scholar
  64. 64.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  65. 65.
    Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  66. 66.
    Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefPubMedGoogle Scholar
  67. 67.
    Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  68. 68.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  69. 69.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  70. 70.
    Miyake A (1981) Cell–cell interaction by gamones in Blepharisma. In: O’Day DH, Horgen PA (eds) Sexual interactions in eukaryotic microbes. Academic, New York, pp 95–129Google Scholar
  71. 71.
    Manz W, Amann RI, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600CrossRefGoogle Scholar
  72. 72.
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefPubMedGoogle Scholar
  73. 73.
    Loy A, Maixner F, Wagner M, Horn M (2007) probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35:D800–D804CrossRefPubMedGoogle Scholar
  74. 74.
    Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A (2004) “Candidatus Hepatincola porcellionum” gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol 181:299–304CrossRefPubMedGoogle Scholar
  75. 75.
    Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568CrossRefPubMedGoogle Scholar
  76. 76.
    Murray RGE, Schleifer KH (1994) A proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44:174–176CrossRefPubMedGoogle Scholar
  77. 77.
    Murray RGE, Stackebrandt E (1995) Implementation of the provisional status Candidatus for incompletely described prokaryotes. Int J Syst Bacteriol 45:186–187CrossRefPubMedGoogle Scholar
  78. 78.
    Borchsenius ON, Skoblo II, Ossipov DV (1983) Holospora curviuscula—a new species of macronuclear symbiotic bacteria of Paramecium bursaria. Tsitologiya 25:91–97, In Russian with English summaryGoogle Scholar
  79. 79.
    Landis WG (1981) The ecology, role of the killer trait, and interactions of five species of Paramecium aurelia complex inhabiting the littoral zone. Can J Zool 59:1734–1743CrossRefGoogle Scholar
  80. 80.
    Landis WG (1987) Factors determining the frequency of the killer trait within populations of the Paramecium aurelia complex. Genetics 115:197–205PubMedGoogle Scholar
  81. 81.
    Preer JR, Stark PS (1953) Cytological observations on the cytoplasmic factor “kappa” in Paramecium aurelia. Exp Cell Res 5:478–491CrossRefPubMedGoogle Scholar
  82. 82.
    Schrallhammer M, Galati S, Altenbuchner J, Schweikert M, Görtz HD, Petroni G (2012) Tracing the role of R-bodies in the killer trait: absence of toxicity of R-body producing recombinant E. coli on paramecia. Eur J Protistol. doi: 10.1016/j.ejop.2012.01.008
  83. 83.
    Preer JR, Preer LB, Jurand A (1974) Kappa and other endosymbionts in Paramecium aurelia. Bacteriol Rev 38:113–163PubMedGoogle Scholar
  84. 84.
    Kusch J, Stremmel M, Breiner HW, Adams V, Schweikert M, Schmidt HJ (2000) The toxic symbiont Caedibacter caryophila in the cytoplasm of Paramecium novaurelia. Microb Ecol 40:330–335PubMedGoogle Scholar
  85. 85.
    Beier CL, Horn M, Michel R, Schweikert M, Görtz HD, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (Alphaproteobacteria) and to Francisella tularensis (Gammaproteobacteria). Appl Environ Microbiol 68:6043–6050CrossRefPubMedGoogle Scholar
  86. 86.
    Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz HD, Schleifer KH (1993) Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci U S A 90:9892–9895CrossRefPubMedGoogle Scholar
  87. 87.
    Jones RT, McCormick KF, Martin AP (2008) Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl Environ Microbiol 74:1667–1670CrossRefPubMedGoogle Scholar
  88. 88.
    Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D (2008) Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10:926–941CrossRefPubMedGoogle Scholar
  89. 89.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Kumar Y, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefPubMedGoogle Scholar
  90. 90.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–147Google Scholar
  91. 91.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vittorio Boscaro
    • 1
  • Sergei I. Fokin
    • 1
  • Martina Schrallhammer
    • 2
  • Michael Schweikert
    • 3
  • Giulio Petroni
    • 1
    Email author
  1. 1.Biology Department, Protistology-Zoology UnitUniversity of PisaPisaItaly
  2. 2.Institute of HydrobiologyDresden University of TechnologyDresdenGermany
  3. 3.Biological InstituteStuttgart UniversityStuttgartGermany

Personalised recommendations