Advertisement

Microbial Ecology

, Volume 65, Issue 1, pp 205–213 | Cite as

Microbial Community Compositional Shifts in Bleached Colonies of the Brazilian Reef-Building Coral Siderastrea stellata

  • Monica M. Lins-de-BarrosEmail author
  • Alexander M. Cardoso
  • Cynthia B. Silveira
  • Joyce L. Lima
  • Maysa M. Clementino
  • Orlando B. Martins
  • Rodolpho M. Albano
  • Ricardo P. Vieira
Host Microbe Interactions

Abstract

The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.

Keywords

Microbial Community Archaea Archaeal Community Bleached Coral Healthy Coral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge Genome Sequencing facilities core Johanna Döbereiner IBqM/UFRJ. We are grateful to Aline S. Turque, Vivian Monteiro, and Denise N. Oliveira for library construction and sequencing. Special thanks to Leonardo H. Pinto for technical assistance. We also would like to thank the magazine referees which highly improved the quality of the information present within this manuscript.

Supplementary material

248_2012_95_MOESM1_ESM.doc (58 kb)
Table S1 Clone library richness, abundance, and diversity parameters (DOC 57 kb)
248_2012_95_MOESM2_ESM.doc (26 kb)
Table S2 Results of the LIBSHUFF analysis (DOC 26 kb)

References

  1. 1.
    Douglas AE (2003) Coral bleaching––how and why? Mar Pollut Bull 46:385–392PubMedCrossRefGoogle Scholar
  2. 2.
    Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17CrossRefGoogle Scholar
  3. 3.
    Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:129–138CrossRefGoogle Scholar
  4. 4.
    Sammarco PW, Winter A, Stewartn JC (2006) Coefficient of variation of sea surface temperature (SST) as an indicator of coral bleaching. Mar Biol 149:1377–1344CrossRefGoogle Scholar
  5. 5.
    Burt J, Bartholomew A, Usseglio P (2008) Recovery of corals a decade after a bleaching event in Dubai, United Arab Emirates. Mar Biol 154:27–36CrossRefGoogle Scholar
  6. 6.
    Jones RJ (2008) Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 154:65–80CrossRefGoogle Scholar
  7. 7.
    Mao-Jones J, Ritchie KB, Jones LE, Ellner SP (2010) How microbial community composition regulates coral disease development. PLoS Biol 8(3):e1000345. doi: 10.1371/journal.pbio.1000345 PubMedCrossRefGoogle Scholar
  8. 8.
    Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Progr Ser 243:1–10CrossRefGoogle Scholar
  9. 9.
    Johnston IS, Rohwer F (2007) Microbial landscapes on the outer tissue surfaces of the reef-building coral Porites compressa. Coral Reefs 26:375–383CrossRefGoogle Scholar
  10. 10.
    Reis AMM, Araújo SD Jr, Moura RL et al (2009) Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J Appl Microbiol. doi: 10.1111/j.1365-2672.2008.04106.x
  11. 11.
    Rodrígues-Ramírez A, Bastidas C, Rodríguez S et al (2008) The effects of coral bleaching in Southern Tropical America: Brazil, Colombia, and Venezuela. In: Wilkinson C, Souter D (eds) Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville, pp 105–114Google Scholar
  12. 12.
    Oigman-Pszcsol SS, Creed JC (2004) Size structure and spatial distribution of the corals Mussismilia hispida and Siderastrea stellata (Scleractinea) at Armação dos Buzios, Brazil. Bull Mar Sci 74:433–448Google Scholar
  13. 13.
    Laborel J (1970) Madréporaires et hydrocoralliaires récifaux des cotes brésiliennes. Systématique, écologie, répartition verticale et géographique. XXXVI Campagne de la Calypso au large des cotes Atlantiques de l’Amérique du Sud (1961–1962). Première et deuxième partie (suite):171–229Google Scholar
  14. 14.
    Goreau TJ, Hayes R, Strong A (1997) Caribbean sea surface temperatures and coral bleaching 1989–1996. Global Coral Reef AllianceTM. http://www.globalcoral.org/caribbean_sea_surface_temperatur.htm
  15. 15.
    Lins-de-Barros MM, Vieira RP, Cardoso AM et al (2010) Archaea, bacteria, and algal plastids associated with the reef-building corals Siderastrea stellata and Mussismilia hispida from Búzios, South Atlantic Ocean, Brazil. Microb Ecol 59:523–532PubMedCrossRefGoogle Scholar
  16. 16.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  17. 17.
    Lane DJ, Pace B, Olsen GJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959PubMedCrossRefGoogle Scholar
  18. 18.
    De Long EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefGoogle Scholar
  19. 19.
    Oliveira MC, Bhattacharya D (2000) Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. Am J Bot 87:482–492PubMedCrossRefGoogle Scholar
  20. 20.
    Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512PubMedCrossRefGoogle Scholar
  21. 21.
    Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  22. 22.
    Edwing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using Phred accuracy assessment. Gen Res 8:175–185Google Scholar
  23. 23.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  25. 25.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  27. 27.
    Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  28. 28.
    Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492PubMedCrossRefGoogle Scholar
  29. 29.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235PubMedCrossRefGoogle Scholar
  30. 30.
    Lozupone C, Lladser ME, Knights D et al (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172PubMedCrossRefGoogle Scholar
  31. 31.
    Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sc 69:357–371Google Scholar
  32. 32.
    Leão ZMAN, Kikuchi RKP, Oliveira MDM, Vasconcellos V (2010) Status of Eastern Brazilian coral reefs in time of climate changes. Pan-American J Aquat Sc 5:224–235Google Scholar
  33. 33.
    Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990PubMedCrossRefGoogle Scholar
  34. 34.
    Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174PubMedCrossRefGoogle Scholar
  35. 35.
    Casas V, Kline DI, Wegley L et al (2004) Widespread association of a Rickettsiales-like bacterium with reef-building corals. Environ Microbiol 6:1137–1148PubMedCrossRefGoogle Scholar
  36. 36.
    Pantos O, Cooney RP, Le Tissier MDA et al (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol 5:370–382PubMedCrossRefGoogle Scholar
  37. 37.
    Thurber RV, Willner-Hall D, Rodriguez-Mueller B et al (2009) Metagenomic analysis of stressed coral holobionts. Env Microbiol 11:2148–2163CrossRefGoogle Scholar
  38. 38.
    Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259PubMedCrossRefGoogle Scholar
  39. 39.
    Könneke M, Bernhard AE, de la Torre JR et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546PubMedCrossRefGoogle Scholar
  40. 40.
    Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246PubMedCrossRefGoogle Scholar
  41. 41.
    Beman JM, Roberts KJ, Wegley L, Rohwer F, Francis CA (2007) Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. AEM 73:5642–5647Google Scholar
  42. 42.
    Wegley L, Yu Y, Breitbart M et al (2004) Coral-associated Archaea. Mar Ecol Prog Ser 273:89–96CrossRefGoogle Scholar
  43. 43.
    Kellogg CA (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88CrossRefGoogle Scholar
  44. 44.
    Rohwer F, Breitbart M, Jara J et al (2001) Diversity of bacteria associated with the Caribbean coral Monstastrea franksi. Coral Reefs 20:85–91CrossRefGoogle Scholar
  45. 45.
    Castro AP, Araújo SD, Reis AMM et al (2010) Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from Eastern Brazil. Microb Ecol 59:658–667PubMedCrossRefGoogle Scholar
  46. 46.
    Ainsworth TD, Fine M, Roff G, Hoegh-Guldberg O (2008) Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J 2:67–73PubMedCrossRefGoogle Scholar
  47. 47.
    Fine M, Loya Y (2002) Endolithic algae: an alternative source of energy during coral bleaching. Proc R Soc B 269:1205–1210PubMedCrossRefGoogle Scholar
  48. 48.
    Ralph PJ, Larkum AWD, Kühl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Monica M. Lins-de-Barros
    • 1
    Email author
  • Alexander M. Cardoso
    • 2
  • Cynthia B. Silveira
    • 4
  • Joyce L. Lima
    • 1
  • Maysa M. Clementino
    • 5
  • Orlando B. Martins
    • 1
  • Rodolpho M. Albano
    • 3
  • Ricardo P. Vieira
    • 1
  1. 1.Instituto de Bioquímica MédicaUniversidade Federal do Rio de Janeiro (UFRJ), CCSRio de JaneiroBrazil
  2. 2.Diretoria de ProgramaInstituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO)Rio de JaneiroBrazil
  3. 3.Departamento de BioquímicaUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  4. 4.Departamento de GenéticaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  5. 5.Instituto Nacional de Controle da Qualidade em Saúde, Fundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil

Personalised recommendations