Advertisement

Microbial Ecology

, Volume 64, Issue 4, pp 1000–1007 | Cite as

Variations in Reactive Oxygen Release and Antioxidant Activity in Multiple Symbiodinium Types in Response to Elevated Temperature

  • Elizabeth S. McGinty
  • Jenna Pieczonka
  • Laura D. Mydlarz
Environmental Microbiology

Abstract

As ocean temperatures rise, investigations into what the physiological effects will be on the symbiotic microalga Symbiodinium, and how these may play into the cnidarian bleaching response, have highlighted the contribution of reactive oxygen species (ROS). Previous studies have laid this groundwork using a limited number of Symbiodinium phylotypes, and so this study aims to expand this understanding by exploring the effects of sub-lethal elevated temperatures on the physiological response of seven genetically distinct types of Symbiodinium, including A1, B1, B2, C1, D, E1, and F2. The production of ROS (at 26 °C, 29 °C, 30 °C, and 31 °C) and activity of the antioxidants catalase (CAT) and superoxide dismutase (SOD) (at 26 °C and 31 °C) were measured as indicators of sensitivity or tolerance to heat stress. Symbiodinium types B1 and C1 were the most thermally sensitive, with C1 producing the highest amount of ROS at elevated temperatures. Types A1 and F2 were tolerant, having no increase in ROS production, and were the only types to increase both CAT and SOD activity with temperature stress. Type B2 had decreased ROS production and elevation of CAT activity, while type E1 had decreased levels of ROS production at elevated temperatures. Type D was the only Symbiodinium type to remain unaffected by elevated temperatures. These results are consistent with previous findings of relative sensitivity or tolerance to elevated temperatures, specifically with regards to types A1, B1, and F2. The inclusion of types B2, C1, D, and E1 provides further new evidence of how types differ in their thermal responses, suggesting differing mechanisms exist in the Symbiodnium response to higher temperature and highlighting the importance of establishing symbiont identity when exploring the response of intact associations to this type of stress.

Keywords

Reactive Oxygen Species Internal Transcribe Spacer Reactive Oxygen Species Production Increase Reactive Oxygen Species Production High Reactive Oxygen Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CAT

Catalase

H2O2

Hydrogen peroxide

ITS-2

Internal transcribed spacer-2

O2-

Superoxide anion

ROS

Reactive oxygen species

SOD

Superoxide dismutase

Notes

Acknowledgments

The authors would like to acknowledge funding from UTA start-up funds, UTA Research Enhancement Program and NSF # 1017458 (to LDM). The authors would like to thank Todd LaJeunesse (Pennsylvania State University) and Scott Santos (Auburn University) for generously providing Symbiodinium cultures, and James Drake, Regina Roy and Whitney T. Mann (University of Texas at Arlington) for experimental support. Comments by David J. Suggett, Robert F. McMahon, Christian L. Cox, Caroline V. Palmer, Whitney T. Mann and two anonymous reviewers have significantly improved this manuscript.

References

  1. 1.
    Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43(1):26–40CrossRefGoogle Scholar
  2. 2.
    Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27(1):2–8CrossRefGoogle Scholar
  3. 3.
    Hallegraeff G (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46(2):220–235CrossRefGoogle Scholar
  4. 4.
    Huertas IE, Rouco M, Lopez-Rodas V, Costas E (2011) Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc Roy Soc B Biol Sci. doi: 10.1098/rspb.2011.0160
  5. 5.
    Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59(5):1069–1080. doi: 10.1093/Jxb/Erm328 PubMedCrossRefGoogle Scholar
  6. 6.
    Muscatine L (1973) Nutrition of corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol 2. Academic, New York, pp 77–115Google Scholar
  7. 7.
    Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138CrossRefGoogle Scholar
  8. 8.
    Suggett DJ, Smith DJ (2011) Interpreting the sign of coral bleaching as friend vs. foe. Global Change Biol 17(1):45–55. doi: 10.1111/J.1365-2486.2009.02155.X CrossRefGoogle Scholar
  9. 9.
    Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213(6):934–945. doi: 10.1242/jeb.037580 PubMedCrossRefGoogle Scholar
  10. 10.
    Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80(4):435–471CrossRefGoogle Scholar
  11. 11.
    Glynn PW (1984) Widespread coral mortality and the 1982–83 El Nino warming event. Environ Conserv 11(2):133–146CrossRefGoogle Scholar
  12. 12.
    Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2(8):e711PubMedCrossRefGoogle Scholar
  13. 13.
    Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: the critical importance of <350 ppm CO2. Mar Pollut Bull 58(10):1428–1436. doi: 10.1016/J.Marpolbul.2009.09.009 PubMedCrossRefGoogle Scholar
  14. 14.
    Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world's coral reefs. Mar Freshwat Res 50(8):839–866CrossRefGoogle Scholar
  15. 15.
    Wilkinson CR (ed) (2004) Status of the coral reefs of the world: 2004. Global Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville, Australia, p 557Google Scholar
  16. 16.
    van Oppen MJH, Lough JM (eds) (2009) Coral bleaching—patterns, processes, causes and consequences, vol 205. Ecological Studies, Springer-VerlagGoogle Scholar
  17. 17.
    Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321(5888):560–563. doi: 10.1126/Science.1159196 PubMedCrossRefGoogle Scholar
  18. 18.
    Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. doi: 10.1146/Annurev.Physiol.68.040104.110001 PubMedCrossRefGoogle Scholar
  19. 19.
    Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radical Biol Med 33(4):533–543.CrossRefGoogle Scholar
  20. 20.
    Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5(5):388–395PubMedCrossRefGoogle Scholar
  21. 21.
    Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211(19):3059–3066. doi: 10.1242/Jeb.009597 PubMedCrossRefGoogle Scholar
  22. 22.
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  23. 23.
    Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396. doi: 10.1104/Pp.106.082040 PubMedCrossRefGoogle Scholar
  24. 24.
    Wong CM, Marcocci L, Liu LL, Suzuki YJ (2010) Cell signaling by protein carbonylation and decarbonylation. Antioxidants & Redox Signaling 12(3):393–404. doi: 10.1089/Ars.2009.2805 CrossRefGoogle Scholar
  25. 25.
    Merle PL, Sabourault C, Richier S, Allemand D, Furla P (2007) Catalase characterization and implication in bleaching of a symbiotic sea anemone. Free Radical Biol Med 42(2):236–246. doi: 10.1016/J.Freeradbiomed.2006.10.038 CrossRefGoogle Scholar
  26. 26.
    Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328(1):35–46. doi: 10.1016/J.Jembe.2005.06.018 CrossRefGoogle Scholar
  27. 27.
    Yakovleva I, Bhagooli R, Takemura A, Hidaka M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 139(4):721–730. doi: 10.1016/J.Cbpc.2004.08.016 PubMedCrossRefGoogle Scholar
  28. 28.
    Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101(37):13531–13535. doi: 10.1073/Pnas.0402907101 PubMedCrossRefGoogle Scholar
  29. 29.
    Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11(1):1–11. doi: 10.1111/J.1365-2486.2004.00895.X CrossRefGoogle Scholar
  30. 30.
    Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci 108(24):9905–9909. doi: 10.1073/pnas.1106924108 PubMedCrossRefGoogle Scholar
  31. 31.
    Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogen Evol 56(1):492–497. doi: 10.1016/J.Ympev.2010.03.040 CrossRefGoogle Scholar
  32. 32.
    Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156(1):19–34. doi: 10.1016/J.Protis.2005.02.004 PubMedCrossRefGoogle Scholar
  33. 33.
    LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37(5):866–880CrossRefGoogle Scholar
  34. 34.
    Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44(4):948–956. doi: 10.1111/J.1529-8817.2008.00537.X CrossRefGoogle Scholar
  35. 35.
    Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195CrossRefGoogle Scholar
  36. 36.
    Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42(3):568–579. doi: 10.1111/J.1529-8817.2006.00232.X CrossRefGoogle Scholar
  37. 37.
    Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallidal Symbiodinium symbiosis. Limnol Oceanogr 50(5):1490–1498CrossRefGoogle Scholar
  38. 38.
    Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388(6639):265–269PubMedCrossRefGoogle Scholar
  39. 39.
    McBride BB, Muller-Parker G, Jakobsen HH (2009) Low thermal limit of growth rate of Symbiodinium californium (Dinophyta) in culture may restrict the symbiont to southern populations of its host anemones (Anthopleura spp.; Anthozoa, Cnidaria). J Phycol 45(4):855–863. doi: 10.1111/J.1529-8817.2009.00716.X CrossRefGoogle Scholar
  40. 40.
    Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44(5):1126–1135. doi: 10.1111/j.1529-8817.2008.00567.x CrossRefGoogle Scholar
  41. 41.
    Freudenthal HD (1962) Symbiodinium gen. Nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Protozool 9:45–52Google Scholar
  42. 42.
    Chang SS, Prezelin BB, Trench RK (1983) Mechanisms of photoadaptation in 3 strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar Biol 76(3):219–229CrossRefGoogle Scholar
  43. 43.
    Franklin DJ, Hoegh-Guldberg P, Jones RJ, Berges JA (2004) Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar Ecol Prog Ser 272:117–130CrossRefGoogle Scholar
  44. 44.
    Mydlarz LD, Jacobs RS (2004) Comparison of an inducible oxidative burst in free-living and symbiotic dinoflagellates reveals properties of the pseudopterosins. Phytochemistry 65(24):3231–3241. doi: 10.1016/J.Phytochem.2004.09.014 PubMedCrossRefGoogle Scholar
  45. 45.
    Saragosti E, Tchernov D, Katsir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 5(9):e12508PubMedCrossRefGoogle Scholar
  46. 46.
    Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41(2):271–283CrossRefGoogle Scholar
  47. 47.
    Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319PubMedCrossRefGoogle Scholar
  48. 48.
    Banaszak AT, Santos MG, LaJeunesse TC, Lesser MP (2006) The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J Exp Mar Biol Ecol 337(2):131–146. doi: 10.1016/J.Jembe.2006.06.014 CrossRefGoogle Scholar
  49. 49.
    Ragni M, Airs RL, Hennige SJ, Suggett DJ, Warner ME, Geider RJ (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 406:57–70CrossRefGoogle Scholar
  50. 50.
    Takahashi S, Whitney SM, Badger MR (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci 106(9):3237–3242. doi: 10.1073/pnas.0808363106 PubMedCrossRefGoogle Scholar
  51. 51.
    Kinzie RA, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200(1):51–58PubMedCrossRefGoogle Scholar
  52. 52.
    Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291(2):181–197. doi: 10.1016/S0022-0981(03)00121-7 CrossRefGoogle Scholar
  53. 53.
    Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24(1):16–20. doi: 10.1016/J.Tree.2008.09.005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elizabeth S. McGinty
    • 1
  • Jenna Pieczonka
    • 1
  • Laura D. Mydlarz
    • 1
  1. 1.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations