Microbial Ecology

, Volume 64, Issue 4, pp 942–954 | Cite as

Bacterial Communities Associated with Production Facilities of Two Newly Drilled Thermogenic Natural Gas Wells in the Barnett Shale (Texas, USA)

  • James P. Davis
  • Christopher G. Struchtemeyer
  • Mostafa S. Elshahed
Environmental Microbiology

Abstract

We monitored the bacterial communities in the gas–water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H2S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.

Supplementary material

248_2012_73_MOESM1_ESM.docx (71 kb)
ESM 1(DOCX 70 kb)
248_2012_73_MOESM2_ESM.docx (17 kb)
ESM 2(DOCX 17 kb)
248_2012_73_MOESM3_ESM.docx (111 kb)
ESM 3(DOCX 110 kb)
248_2012_73_MOESM4_ESM.doc (80 kb)
ESM 4(DOC 79 kb)

References

  1. 1.
    Witze A (2007) Energy: that's oil, folks. Nature 445(7123):14–17PubMedCrossRefGoogle Scholar
  2. 2.
    Hu E, Huang Z, Liu B, Zheng J, Gu X, Huang B (2009) Experimental investigation on performance and emissions of a spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR. Int J Hydrogen Energy 34:528–539CrossRefGoogle Scholar
  3. 3.
    Zhang H, Chen J, Guo S (2008) Preparation of natural gas adsorbents from high-sulfur petroleum coke. Fuel 87:304–311CrossRefGoogle Scholar
  4. 4.
    Kerr RA (2010) Natural gas from shale bursts onto the scene. Sci 328(5986):1624–1626CrossRefGoogle Scholar
  5. 5.
    Pollastro RM (2007) Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas. AAPG Bull 91:551–578CrossRefGoogle Scholar
  6. 6.
    Hill RJ, Jarvie DM, Zumberge J, Henry M, Pollastro RM (2007) Oil and gas geochemistry and petroleum systems of the Fort Worth Basin. AAPG Bull 91(4):445–473CrossRefGoogle Scholar
  7. 7.
    Bowker KA (2007) Barnett Shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull 91(4):523–533CrossRefGoogle Scholar
  8. 8.
    Bowker KA (2003) Recent development of the Barnett Shale play. Fort Worth Basin. W Tex Geol Soc Bull 42:4–11Google Scholar
  9. 9.
    Fichter JK, Johnson K, French K, Oden R (2009) Biocides control Barnett shale fracturing fluid contamination. Oil & Gas J 107:38–44Google Scholar
  10. 10.
    Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington D.C., pp 21–33Google Scholar
  11. 11.
    Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells from the Barnett shale. Appl Environ Microbiol 77(14):4744–4753PubMedCrossRefGoogle Scholar
  12. 12.
    Struchtemeyer CG, Elshahed MS (2011) Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2011.01196.x
  13. 13.
    Jan-Roblero J, Posadas A, Díaz Z, de la Serna J, García R, Hernández-Rodríguez C (2008) Phylogenetic characterization of bacterial consortia obtained of corroding gas pipelines in Mexico. World J Microbiol Biotechnol 24(9):1775–1784CrossRefGoogle Scholar
  14. 14.
    Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  15. 15.
    Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods 5:235–237PubMedCrossRefGoogle Scholar
  16. 16.
    Muyzer G, deWaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  17. 17.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541PubMedCrossRefGoogle Scholar
  18. 18.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072PubMedCrossRefGoogle Scholar
  19. 19.
    DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399PubMedCrossRefGoogle Scholar
  20. 20.
    Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87(417):210–217CrossRefGoogle Scholar
  21. 21.
    Chao A, Ma MC, Yang MCK (1993) Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80(1):193–201CrossRefGoogle Scholar
  22. 22.
    Weaver W, Shannon CE (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  23. 23.
    Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skr/K Dan Vidensk Selsk 5:1–34Google Scholar
  24. 24.
    Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand J-C (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42(4):568–576PubMedCrossRefGoogle Scholar
  25. 25.
    Collado L, Cleenwerck I, Van Trappen S, De Vos P, Figueras MJ (2009) Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 59(6):1391–1396PubMedCrossRefGoogle Scholar
  26. 26.
    Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54(3):427–443PubMedCrossRefGoogle Scholar
  27. 27.
    Wang L-T, Lee F-L, Tai C-J, Kuo H-P (2008) Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol 58(3):671–675PubMedCrossRefGoogle Scholar
  28. 28.
    Dinsdale AE, Halket G, Coorevits A, Van Landschoot A, Busse H-J, De Vos P, Logan NA (2011) Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. Int J Syst Evol Microbiol 61(8):1802–1810PubMedCrossRefGoogle Scholar
  29. 29.
    Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2002) Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents. Syst Appl Microbiol 25(3):450–455PubMedCrossRefGoogle Scholar
  30. 30.
    Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval J-P, Lesongeur Fo, Raguenes Gr, Crassous P, Querellou Jl, Cambon-Bonavita M-A (2002) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52(5):1621–1628PubMedCrossRefGoogle Scholar
  31. 31.
    Neria-González I, Wang ET, Ramírez F, Romero JM, Hernández-Rodríguez C (2006) Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12(3):122–133PubMedCrossRefGoogle Scholar
  32. 32.
    Ravot G, Magot M, Ollivier B, Patel BKC, Ageron E, Grimont PAD, Thomas P, Garcia JL (1997) Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147(1):81–88PubMedCrossRefGoogle Scholar
  33. 33.
    Sette L, Simioni K, Vasconcellos S, Dussan L, Neto E, Oliveira V (2007) Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Anton Leeuw 91(3):253–266CrossRefGoogle Scholar
  34. 34.
    van der Kraan GM, Bruining J, Lomans BP, Van Loosdrecht MCM, Muyzer G (2010) Microbial diversity of an oil–water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. FEMS Microbiol Ecol 71(3):428–443PubMedCrossRefGoogle Scholar
  35. 35.
    Zhu XY, Lubeck J, Kilbane JJ II (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69(9):5354–5363PubMedCrossRefGoogle Scholar
  36. 36.
    Dahle H, Garshol F, Madsen M, Birkeland N-K (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Anton Leeuw 93(1):37–49CrossRefGoogle Scholar
  37. 37.
    Oren A, Pohla H, Stackebrandt E (1987) Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov. and description of Sporohalobacter marismortui sp. nov. Syst Appl Microbiol 9:239–246CrossRefGoogle Scholar
  38. 38.
    Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP, Zavarzin GA (1995) The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1(4):185–199PubMedCrossRefGoogle Scholar
  39. 39.
    Arahal DR, García MT, Vargas C, Cánovas D, Nieto JJ, Ventosa A (2001) Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51(4):1457–1462PubMedGoogle Scholar
  40. 40.
    Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70(2):510–547PubMedCrossRefGoogle Scholar
  41. 41.
    Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711. doi:10.1128/aem.66.2.700-711.2000 PubMedCrossRefGoogle Scholar
  42. 42.
    Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb J-F, DeLong EF, Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11(1):176–187PubMedCrossRefGoogle Scholar
  43. 43.
    Scholz T, Demharter W, Hensel R, Kandler O (1987) Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96CrossRefGoogle Scholar
  44. 44.
    Gittel A, Sorensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75(22):7086–7096PubMedCrossRefGoogle Scholar
  45. 45.
    Mori K, Tsurumaru H, Harayama S (2010) Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110(4):426–430PubMedCrossRefGoogle Scholar
  46. 46.
    Surkov AV, Dubinina GA, Lysenko AM, Glöckner FO, Kuever J (2001) Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51(2):327–337PubMedGoogle Scholar
  47. 47.
    Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62(5):1623–1629PubMedGoogle Scholar
  48. 48.
    Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Petrol Technol 1:97–106Google Scholar
  49. 49.
    Youssef NH, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • James P. Davis
    • 1
  • Christopher G. Struchtemeyer
    • 1
  • Mostafa S. Elshahed
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA

Personalised recommendations