Microbial Ecology

, Volume 64, Issue 4, pp 860–869 | Cite as

High Bacterial Diversity in Epilithic Biofilms of Oligotrophic Mountain Lakes

  • Mireia Bartrons
  • Jordi Catalan
  • Emilio O. CasamayorEmail author
Microbiology of Aquatic Systems


Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than previously thought.


Clone Library Bacteroidetes Altitudinal Gradient Bacterial Community Composition Mountain Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are thankful to the Authorities of the Aigüestortes and Estany de St Maurici National Park for permission to work in the protected areas and continuous support, and the Centre de Recerca d’Alta Muntanya (CRAM), Universitat de Barcelona, Vielha, for laboratory facilities. J. Arola, C. Gutiérrez, and X. Triadó are acknowledged for field and laboratory assistance, and J.C. Auguet for help with the diversity indexes and critical reading of the manuscript. This research was supported by grants TRAZAS (CGL2004-02989), NitroPir (CGL2010-19373), and PIRENA (CGL2009-13318) from the Spanish Office of Science and Innovation (MICINN), the CONSOLIDER grant GRACCIE CSD2007-00067 (MICINN), and the EU Project Euro-Limpacs (GOCE-CT-2003- 505540).

Supplementary material

248_2012_72_MOESM1_ESM.doc (111 kb)
ESM 1 (DOC 111 kb)


  1. 1.
    Romaní AM, Guasch H, Muñoz I, Ruana J, Vilalta E, Schwartz T, Emtiazi F, Sabater S (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47(4):316–328. doi: 10.1007/s00248-003-2019-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Micro 5(1):76–81. Google Scholar
  3. 3.
    Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Bentholl Soc 14(4):631–653CrossRefGoogle Scholar
  4. 4.
    Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Kalff J (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89(9):2542–2552. doi: 10.1890/07-1058.1 PubMedCrossRefGoogle Scholar
  5. 5.
    Lindström ES (1998) Bacterioplankton community composition in a boreal forest lake. FEMS Microbiol Ecol 27(2):163–174. doi: 10.1111/j.1574-6941.1998.tb00534.x CrossRefGoogle Scholar
  6. 6.
    Pernthaler J, Glockner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64(11):4299–4306PubMedGoogle Scholar
  7. 7.
    Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66(11):5053–5065. doi: 10.1128/aem.66.11.5053-5065.2000 PubMedCrossRefGoogle Scholar
  8. 8.
    Casamayor EO, Schafer H, Baneras L, Pedros-Alio C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66(2):499–508PubMedCrossRefGoogle Scholar
  9. 9.
    Pearce DA, van der Gast CJ, Woodward K, Newsham KK (2005) Significant changes in the bacterioplankton community structure of a maritime Antarctic freshwater lake following nutrient enrichment. Microbiology 151(10):3237–3248. doi: 10.1099/mic.0.27258-0 PubMedCrossRefGoogle Scholar
  10. 10.
    Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65(7):3192–3204PubMedGoogle Scholar
  11. 11.
    Cebron A, Coci M, Garnier J, Laanbroek HJ (2004) Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl Environ Microbiol 70(11):6726–6737. doi: 10.1128/aem.70.11.6726-6737.2004 PubMedCrossRefGoogle Scholar
  12. 12.
    Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river–floodplain system (Danube, Austria). Appl Environ Microbiol 71(2):609–620. doi: 10.1128/aem.71.2.609-620.2005 PubMedCrossRefGoogle Scholar
  13. 13.
    Battin TJ, Wille A, Psenner R, Richter A (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1:159–171CrossRefGoogle Scholar
  14. 14.
    Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Micro 6(3):199–210CrossRefGoogle Scholar
  15. 15.
    Fike DA, Gammon CL, Ziebis W, Orphan VJ (2008) Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J 2(7):749–759. Google Scholar
  16. 16.
    Camarero L, Catalan J (1996) Variability in the chemistry of precipitation in the Pyrenees (northeastern Spain): dominance of storm origin and lack of altitude influence. JGR 101(D23):29491–29498CrossRefGoogle Scholar
  17. 17.
    Hervas A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11(6):1612–1623. doi: 10.1111/j.1462-2920.2009.01926.x PubMedCrossRefGoogle Scholar
  18. 18.
    Fernandez P, Grimalt JO (2003) On the global distribution of persistent organic pollutants. Chimia 57(9):514–521CrossRefGoogle Scholar
  19. 19.
    Catalan J, Camarero L, Felip M, Pla S, Ventura M, Buchaca T, Bartumeus F, Mendoza G, Miró A, Casamayor EO, Medina-Sánchez JM, Bacardit M, Altuna M, Bartrons M, Díaz de Quijano D (2006) High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25(1–2):551–584Google Scholar
  20. 20.
    Parker BR, Vinebrooke RD, Schindler DW (2008) Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci U S A 105(35):12927–12931PubMedCrossRefGoogle Scholar
  21. 21.
    Rose KC, Williamson CE, Saros JE, Sommaruga R, Fischer JM (2009) Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms. Photochem Photobiol Sci 8(9):1244–1256PubMedCrossRefGoogle Scholar
  22. 22.
    Catalan J, Barbieri MG, Bartumeus F, Bitusík P, Botev I, Brancelj A, Cogalniceanu D, Manca M, Marchetto A, Ognjanova-Rumenova N, Pla S, Rieradevall M, Sorvari S, Stefkova E, Stuchlik E, Ventura M (2009) Ecological thresholds in European alpine lakes. Freshwat Biol 54(12):2494–2517CrossRefGoogle Scholar
  23. 23.
    Bartrons M, Camarero L, Catalan J (2010) Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7:1469–1479. doi: 10.5194/bg-7-1469-2010 CrossRefGoogle Scholar
  24. 24.
    Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusík P, Buchaca T, Camarero L, Goudsmit GH, Kopacek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46CrossRefGoogle Scholar
  25. 25.
    Steinman AD, Lamberti GA (1996) Biomass and pigments of benthic algae. Methods in stream ecology. Academic Press, ElsevierGoogle Scholar
  26. 26.
    Dumestre J-F, Casamayor EO, Massana R, Pedrós-Alió C (2002) Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana). Aquat Microb Ecol 26(3):209–221. doi: 10.3354/ame026209 CrossRefGoogle Scholar
  27. 27.
    Casamayor EO, Pedros-Alio C, Muyzer G, Amann R (2002) Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations. Appl Environ Microbiol 68(4):1706–1714PubMedCrossRefGoogle Scholar
  28. 28.
    Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49(2):281–293. doi: 10.1016/j.femsec.2004.04.002 PubMedCrossRefGoogle Scholar
  29. 29.
    Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504PubMedCrossRefGoogle Scholar
  30. 30.
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20(14):2317–2319PubMedCrossRefGoogle Scholar
  31. 31.
    Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65(9):3982–3989PubMedGoogle Scholar
  32. 32.
    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10CrossRefGoogle Scholar
  33. 33.
    Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169(3):E68–E83CrossRefGoogle Scholar
  34. 34.
    Barberan A, Casamayor EO (2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microb Ecol 59(1):1–10. doi: 10.3354/ame01389 CrossRefGoogle Scholar
  35. 35.
    Hervas A (2009) Bacterial dispersal on airbone Saharan dust particles: survival and colonization in alpine lakes of the Limnological Observatory of the Pyrenees. Universitat Autònoma de Barcelona, BarcelonaGoogle Scholar
  36. 36.
    Llorens-Marès T, Auguet JC, Casamayor EO (2012) Winter to spring changes in bacterial community composition in the slush layers of a high-mountain lake (Lake Redon, Pyrenees). Environ Microbiol Rep 4:50–56. doi: 10.1111/j.1758-2229.2011.00278.x CrossRefGoogle Scholar
  37. 37.
    Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59(2):418–427PubMedCrossRefGoogle Scholar
  38. 38.
    Likens GE (2010) Plankton of inland waters. Academic Press, Oxford, UKGoogle Scholar
  39. 39.
    Bowen KL, Kaushik NK, Gordon AM (1998) Macroinvertebrate communities and biofilm chlorophyll on woody debris in two Canadian oligotrophic lakes. Archiv fur Hidrobiologie 141(3):257–281Google Scholar
  40. 40.
    Tank JL, Dodds WK (2003) Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwat Biol 48(6):1031–1049. doi: 10.1046/j.1365-2427.2003.01067.x CrossRefGoogle Scholar
  41. 41.
    Lyautey E, Lacoste B, Ten-Hage L, Rols JL, Garabetian F (2005) Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water Res 39(2–3):380–388. doi: 10.1016/j.watres.2004.09.025 PubMedCrossRefGoogle Scholar
  42. 42.
    Anderson-Glenna MJ, Bakkestuen V, Clipson NJW (2008) Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiol Ecol 64(3):407–418. doi: 10.1111/j.1574-6941.2008.00480.x PubMedCrossRefGoogle Scholar
  43. 43.
    Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67(2):799–807. doi: 10.1128/aem.67.2.799-807.2001 PubMedCrossRefGoogle Scholar
  44. 44.
    Hempel M, Grossart H, Gross EM (2009) Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquat Microb Ecol 58(1):79–94. doi: 10.3354/ame01353 CrossRefGoogle Scholar
  45. 45.
    Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71(9):5551–5559PubMedCrossRefGoogle Scholar
  46. 46.
    Arnds J, Knittel K, Buck U, Winkel M, Amann R (2010) Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst Appl Microbiol 33(3):139–148PubMedCrossRefGoogle Scholar
  47. 47.
    Lappin-Scott HM, Costerton JW (2003) Microbial biofilms. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  48. 48.
    Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39(2):91–100PubMedGoogle Scholar
  49. 49.
    Mary I, Cummings DG, Biegala IC, Burkill PH, Archer SD, Zubkov MV (2006) Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol 42(2):119–126CrossRefGoogle Scholar
  50. 50.
    Hahn MW, Schauer M (2007) 'Candidatus Aquirestis calciphila' and 'Candidatus Haliscomenobacter calcifugiens, filamentous, planktonic bacteria inhabiting natural lakes. Int J Syst Evol Microbiol 57:936–940. doi: 10.1099/ijs.0.64807-0 PubMedCrossRefGoogle Scholar
  51. 51.
    Pernthaler J, Zollner E, Warnecke F, Jurgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70(10):6272–6281. doi: 10.1128/aem.70.10.6272-6281.2004 PubMedCrossRefGoogle Scholar
  52. 52.
    Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71(4):1931–1940. doi: 10.1128/aem.71.4.1931-1940.2005 PubMedCrossRefGoogle Scholar
  53. 53.
    Schauer M, Jiang J, Hahn MW (2006) Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria). Appl Environ Microbiol 72(7):4704–4712. doi: 10.1128/aem.02935-05 PubMedCrossRefGoogle Scholar
  54. 54.
    Zeder M, Peter S, Shabarova T, Pernthaler J (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11(10):2676–2686. doi: 10.1111/j.1462-2920.2009.01994.x PubMedCrossRefGoogle Scholar
  55. 55.
    Teira E, Gasol JM, Aranguren-Gassis M, Fernandez A, Gonzalez J, Lekunberri I, Alvarez-Salgado XA (2008) Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem. Environ Microbiol 10(4):906–917. doi: 10.1111/j.1462-2920.2007.01509.x PubMedCrossRefGoogle Scholar
  56. 56.
    Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, Marrase C (2004) Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70(11):6753–6766. doi: 10.1128/aem.70.11.6753-6766.2004 PubMedCrossRefGoogle Scholar
  57. 57.
    Nielsen PH (1987) Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic condition. Appl Environ Microbiol 53(1):27–32PubMedGoogle Scholar
  58. 58.
    Sommaruga R, Casamayor EO (2009) Bacterial 'cosmopolitanism' and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwat Biol 55(5):994–1005CrossRefGoogle Scholar
  59. 59.
    Bartrons M, Grimalt JO, Catalan J (2011) Altitudinal distributions of BDE-209 and other polybromodiphenyl ethers in high mountain lakes. Environ Pollut 159:1816–1822PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mireia Bartrons
    • 1
    • 2
  • Jordi Catalan
    • 1
  • Emilio O. Casamayor
    • 1
    Email author
  1. 1.Biogeodynamics and Biodiversity Group, Centre for Advanced Studies of BlanesCEAB-CSIC, Spanish Council for Scientific ResearchBlanesSpain
  2. 2.Center for LimnologyUniversity of Wisconsin, MadisonMadisonUSA

Personalised recommendations