Microbial Ecology

, Volume 64, Issue 2, pp 346–358 | Cite as

Mesocosms of Aquatic Bacterial Communities from the Cuatro Cienegas Basin (Mexico): A Tool to Test Bacterial Community Response to Environmental Stress

  • Silvia Pajares
  • German Bonilla-Rosso
  • Michael Travisano
  • Luis E. Eguiarte
  • Valeria Souza
Microbiology of Aquatic Systems

Abstract

Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.

Supplementary material

248_2012_45_MOESM1_ESM.doc (50 kb)
Table S1(DOC 50 kb)
248_2012_45_MOESM2_ESM.doc (44 kb)
Table S2(DOC 43 kb)
248_2012_45_MOESM3_ESM.doc (40 kb)
Table S3(DOC 40 kb)
248_2012_45_MOESM4_ESM.doc (39 kb)
Table S4(DOC 39 kb)
248_2012_45_MOESM5_ESM.doc (70 kb)
Table S5(DOC 69 kb)
248_2012_45_MOESM6_ESM.pdf (346 kb)
Figure S1(PDF 345 kb)
248_2012_45_MOESM7_ESM.pdf (1.6 mb)
Figure S2(PDF 1634 kb)

References

  1. 1.
    Adams HE, Crump BC, Kling GW (2010) Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environ Microbiol 12:1319–1333PubMedCrossRefGoogle Scholar
  2. 2.
    Alcaraz LD, Olmedo G, Bonilla G, Cerritos R, Hernández G (2008) The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci U S A 105:5803–5808PubMedCrossRefGoogle Scholar
  3. 3.
    Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommaruga R (2006) Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in northwestern Mediterranean coastal waters. Appl Environ Microbiol 72:5806–5813PubMedCrossRefGoogle Scholar
  4. 4.
    Arrieta JM, Weinbauer MG, Herndl G (2000) Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria. Appl Environ Microbiol 66:1468–1473PubMedCrossRefGoogle Scholar
  5. 5.
    Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791PubMedCrossRefGoogle Scholar
  6. 6.
    Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160PubMedCrossRefGoogle Scholar
  7. 7.
    Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–791PubMedCrossRefGoogle Scholar
  8. 8.
    Bertilsson S, Eiler A, Nordqvist A, Jørgensen NOG (2007) Links between bacterial production, amino-acid utilization and community composition in productive lakes. ISME J 1:532–544PubMedCrossRefGoogle Scholar
  9. 9.
    Breitbart M, Hoare A, Nitti A et al (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienegas, Mexico. Environ Microbiol 11:16–34PubMedCrossRefGoogle Scholar
  10. 10.
    Callieri C (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwat Rev 1:1–28Google Scholar
  11. 11.
    Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixereu N (2003) Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb Ecol 45:203–217PubMedCrossRefGoogle Scholar
  12. 12.
    Cerritos R, Eguiarte LE, Avitia M et al (2011) Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Cienegas, Coahuila, Mexico. Antonie Van Leeuwenhoek 99:303–318PubMedCrossRefGoogle Scholar
  13. 13.
    Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing compositional similarity based on incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  14. 14.
    DeSantis TZ, Dubosarskiy I, Murray SR, Andersen GL (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19:1461–1468PubMedCrossRefGoogle Scholar
  15. 15.
    Desnues C, Rodriguez-Brito B, Rayhawk S et al (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–343PubMedCrossRefGoogle Scholar
  16. 16.
    Escalante AE, Eguiarte LE, Espinosa L et al (2008) Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol 65:50–60PubMedCrossRefGoogle Scholar
  17. 17.
    Fuchs BM, Spring S, Teeling H et al (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci U S A 104:2891PubMedCrossRefGoogle Scholar
  18. 18.
    Fuerst JA, Hawkins JA, Holmes A et al (1993) Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43:125–134PubMedCrossRefGoogle Scholar
  19. 19.
    García-Pichel F (1994) A model for the internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  20. 20.
    Glöckner FO, Zaichikov E, Belkova N et al (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065PubMedCrossRefGoogle Scholar
  21. 21.
    González JM, Fernández-Gómez B, Fernández-Guerra A et al (2008) Genome analysis of the proteorhodospin-containing marine bacterium Polaribacter sp. Proc Natl Acad Sci U S A 105:8724–8729PubMedCrossRefGoogle Scholar
  22. 22.
    Green SJ, Jahnke LL (2010) Molecular investigations and experimental manipulations of microbial mats: a view to paleomicrobial ecosystems. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems. Springer, Berlin, pp 185–208Google Scholar
  23. 23.
    Hahn MW (2009) Description of seven candidate species affiliated with the phylum Actinobacteria, representing planktonic freshwater bacteria. IJSEM 59:112–117PubMedGoogle Scholar
  24. 24.
    Hahn MW, Lünsdorf H, Wu Q et al (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451PubMedCrossRefGoogle Scholar
  25. 25.
    Hisada T, Okamura K, Hiraishi A (2007) Isolation and characterization of phototrophic purple nonsulfur bacteria from Chloroflexus and cyanobacterial mats in hot springs. Microbes Environ 22:405–411CrossRefGoogle Scholar
  26. 26.
    Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327PubMedCrossRefGoogle Scholar
  27. 27.
    Hughes JB, Hellmann JJ (2005) The application of rarefaction techniques to molecular inventories of microbial diversity. Meth Enzymol 397:292–308PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406PubMedCrossRefGoogle Scholar
  29. 29.
    Hutalle-Schmelzer KM, Zwirnmann E, Krüger A, Grossart HP (2010) Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions. FEMS Microbiol Ecol 72:58–73PubMedCrossRefGoogle Scholar
  30. 30.
    Imhoff JF (2005) The Proteobacteria, part C. The Alphaproteobacteria family I. Rhodospirillaceae. In: Brenner DJ, Kreig NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 32CrossRefGoogle Scholar
  31. 31.
    Jagger J (1983) Physiological effects of near-ultraviolet radiation on bacteria. Photochem Photobiol Rev 7:1–75CrossRefGoogle Scholar
  32. 32.
    Jessup CM, Kassen R, Forde SE et al (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197PubMedCrossRefGoogle Scholar
  33. 33.
    Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UVB radiation. Appl Environ Microbiol 65:3820–3827PubMedGoogle Scholar
  34. 34.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–157Google Scholar
  35. 35.
    Lauro FM, McDougald D, Thomas T et al (2009) The genomic basis of thropic strategy in marine bacteria. Proc Natl Acad Sci U S A 106:15527–15533PubMedCrossRefGoogle Scholar
  36. 36.
    Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinform 23:127–128CrossRefGoogle Scholar
  37. 37.
    Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76PubMedCrossRefGoogle Scholar
  38. 38.
    Mackenzie C, Chidambaram M, Sodergren EJ, Kaplan S, Weinstock GM (1995) DNA repair mutants of Rhodobacter sphaeroides. J Bacteriol 177:3027–3035PubMedGoogle Scholar
  39. 39.
    Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford, 256 pGoogle Scholar
  40. 40.
    Minckley W (1969) Environments of the Bolson of Cuatro Cienegas, Cuahuila, Mexico, with special reference to the aquatic biota. University of Texas, El Paso. Science Series 2:1–65Google Scholar
  41. 41.
    Moreno-Letelier A, Olmedo G, Eguiarte LE, Martínez-Castilla L, Souza V (2011) Parallel evolution and horizontal gene transfer of the pst operon in Bacillus from oligotrophic environments. Int J Evol Biol. doi:10.4061/2011/781642
  42. 42.
    Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49PubMedCrossRefGoogle Scholar
  43. 43.
    Nübel U, García-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  44. 44.
    Ordoñez OF, Flores MR, Dib JR, Paz A, Farías ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473PubMedCrossRefGoogle Scholar
  45. 45.
    Ostrowski M, Cavicchioli R, Blaauw M, Gottschal JC (2001) Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256. Appl Environ Microbiol 67:1292–1299PubMedCrossRefGoogle Scholar
  46. 46.
    Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  47. 47.
    Peimbert M, Alcaraz LD, Hernández I et al (2012) Extreme Redfield ratios, metagenomic and microbial diversity analyses of a seasonal shallow red pool in Cuatro Cienegas Coahuila, Mexico. Astrobiology (in press)Google Scholar
  48. 48.
    Pettersson M, Baath E (2003) The rate of change of a soil bacterial community after liming as a function of temperature. Microb Ecol 46:177–186PubMedGoogle Scholar
  49. 49.
    Philosof A, Sabehi G, Béjà O (2009) Comparative analyses of actinobacterial genomic fragments from Lake Kinneret. Environ Microbiol 11:3189–3200PubMedCrossRefGoogle Scholar
  50. 50.
    Rényi A (1961) On measures of information and entropy. In: Proc 4th Berkeley Symp on Math, Statist Prob. Univ California, pp 547–561Google Scholar
  51. 51.
    Ross JC, Vincent WF (1998) Temperature dependence of UV radiation effects on antarctic cyanobacteria. J Phycol 34:118–125CrossRefGoogle Scholar
  52. 52.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  53. 53.
    Sharma AK, Sommerfeld K, Bullerjahn GS et al (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:726–737PubMedCrossRefGoogle Scholar
  54. 54.
    Souza V, Eguiarte LE, Siefert J, Elser JJ (2008) Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol 6:559–564PubMedCrossRefGoogle Scholar
  55. 55.
    Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci U S A 103:6565–6570PubMedCrossRefGoogle Scholar
  56. 56.
    Souza V, Siefert J, Escalante AE, Elser JJ, Eguiarte LE (2012) The Cuatro Cienegas Bolson in Coahuila, Mexico: an astrobiological Precambrian park. Astrobiology (in press)Google Scholar
  57. 57.
    Szabo KE, Itor POB, Bertilsson S, Tranvik L, Eiler A (2007) Importance of rare and abundant populations for the structure and functional potential of freshwater bacterial communities. Aquat Microb Ecol 47:1–10CrossRefGoogle Scholar
  58. 58.
    Tobler M, Carson EW (2010) Environmental variation, hybridization, and phenotypic diversification in Cuatro Cienegas pupfishes. J Evol Biol 23:1475–1489PubMedCrossRefGoogle Scholar
  59. 59.
    Vincent WF, Quesada A (1997) Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats. In: Battaglia B, Valencia J, Walton D (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 388–395Google Scholar
  60. 60.
    Warnecke F, Amann R, Pernthaler J (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6:242–253PubMedCrossRefGoogle Scholar
  61. 61.
    Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559PubMedCrossRefGoogle Scholar
  62. 62.
    Winter C, Moeseneder MM, Herndl GJ (2001) Impact of UV radiation on bacterioplankton community composition. Appl Environ Microbiol 67:665–672PubMedCrossRefGoogle Scholar
  63. 63.
    Yabuuchi E, Kosako Y (2005) Order IV. Sphingomonadales ord. nov. In: Brenner DJ, Kreig NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 230–233Google Scholar
  64. 64.
    Zwart G, Crump BC, Agterveld MPKW, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Silvia Pajares
    • 1
    • 2
  • German Bonilla-Rosso
    • 1
  • Michael Travisano
    • 3
  • Luis E. Eguiarte
    • 1
  • Valeria Souza
    • 1
  1. 1.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Consejo Superior de Investigaciones Científicas (IRNA-CSIC)SalamancaSpain
  3. 3.Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSaint PaulUSA

Personalised recommendations