Microbial Ecology

, Volume 64, Issue 1, pp 162–170 | Cite as

Phototrophic Phylotypes Dominate Mesothermal Microbial Mats Associated with Hot Springs in Yellowstone National Park

  • Kimberly A. Ross
  • Leah M. Feazel
  • Charles E. Robertson
  • Babu Z. Fathepure
  • Katherine E. Wright
  • Rebecca M. Turk-MacLeod
  • Mallory M. Chan
  • Nicole L. Held
  • John R. Spear
  • Norman R. Pace
Environmental Microbiology

Abstract

The mesothermal outflow zones (50–65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green–orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium “Candidatus Chloracidobacterium thermophilum” were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.

Supplementary material

248_2012_12_MOESM1_ESM.pdf (52 kb)
Online resource 1Table showing number of layers derived from each mat, layer color, and sequences generated from each layer (PDF 52 kb)
248_2012_12_MOESM2_ESM.tiff (95 kb)
High-resolution image (TIFF 95 kb)

References

  1. 1.
    Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Ferris MJ, Magnuson TS, Fagg JA, Thar R, Kühl M, Sheehan KB, Henson JM (2003) Microbially mediated sulphide production in a thermal, acidic algal mat community in Yellowstone National Park. Environ Microbiol 5:954–960PubMedCrossRefGoogle Scholar
  3. 3.
    Ward DM and FM Cohan (2005) Microbial diversity in hot spring cyanobacterial mats: pattern and prediction, geothermal biology and geochemistry in Yellowstone National Park: Proceeding of the Thermal Biology Institute Workshop, Yellowstone National Park, WY., pp. 185–202 Montana State University Publications.Google Scholar
  4. 4.
    Spear JR, Walker JJ, McCollom TM, Pace NR (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA 102:2555–2560PubMedCrossRefGoogle Scholar
  5. 5.
    Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014PubMedCrossRefGoogle Scholar
  6. 6.
    Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedGoogle Scholar
  7. 7.
    Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119PubMedGoogle Scholar
  8. 8.
    Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedGoogle Scholar
  9. 9.
    Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  10. 10.
    Castenholz RW, Ward DM (2000) Cyanobacteria in geothermal habitats, the ecology of cyanobacteria: their diversity in time and space. Springer, Berlin, pp 37–59Google Scholar
  11. 11.
    Boomer SM, Lodge DP, Dutton BE, Pierson B (2002) Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol 68:346–355PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68PubMedCrossRefGoogle Scholar
  13. 13.
    Jaenicke R and R Sterner (2006) Life at high temperatures. The Prokaryotes, pp. 167–209.Google Scholar
  14. 14.
    Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542PubMedCrossRefGoogle Scholar
  15. 15.
    Langner HW, Jackson CR, McDermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309PubMedCrossRefGoogle Scholar
  16. 16.
    Nordstrom DK, Ball JW, and McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park, geothermal biology and geochemistry in Yellowstone National Park: Proceeding of the Thermal Biology Institute Workshop, Yellowstone National Park, WY., pp. 73–94 Montana State University Publications.Google Scholar
  17. 17.
    Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings R, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773PubMedCrossRefGoogle Scholar
  18. 18.
    Jackson TJ, Ramaley RF, Meinschein WG (1973) Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J Syst Bacteriol 23:28–36CrossRefGoogle Scholar
  19. 19.
    Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24PubMedCrossRefGoogle Scholar
  20. 20.
    Allewalt JP, Bateson MM, Revsbech NP, Slack K, Ward DM (2006) Effect of temperature and light on growth of and photosynthesis by synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 72:544–550PubMedCrossRefGoogle Scholar
  21. 21.
    Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526PubMedCrossRefGoogle Scholar
  22. 22.
    van der Meer MTJ, Klatt CG, Wood J, Bryant DA, Bateson MM, Lammerts L, Schouten S, Sinninghe Damste JS, Madigan MT, Ward DM (2010) Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 192:3033–3042PubMedCrossRefGoogle Scholar
  23. 23.
    Ferris M, Ward D (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381PubMedGoogle Scholar
  24. 24.
    Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572PubMedCrossRefGoogle Scholar
  25. 25.
    Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659PubMedCrossRefGoogle Scholar
  26. 26.
    Boomer SM, Noll KL, Geesey GG, and BE Dutton (2009) Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, WY, USA. Appl. Environ. Microbiol. AEM.01802-08.Google Scholar
  27. 27.
    Ward DM, Bateson MM, Ferris MJ, Kühl M, Wieland A, Koeppel A, Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos Trans R Soc London Series B, Biological Sciences 361:1997–2008CrossRefGoogle Scholar
  28. 28.
    Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 49:1379–1384PubMedGoogle Scholar
  29. 29.
    Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol Rev 6:105–115PubMedGoogle Scholar
  30. 30.
    Steunou A-S, Bhaya D, Bateson MM, Melendrez MC, Ward DM, Brecht E, Peters JW, Kühl M, Grossman AR (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci USA 103:2398–2403PubMedCrossRefGoogle Scholar
  31. 31.
    Kilian O, Steunou A-S, Fazeli F, Bailey S, Bhaya D, Grossman AR (2007) Responses of a thermophilic synechococcus isolate from the microbial mat of Octopus Spring to light. Appl Environ Microbiol 73:4268–4278PubMedCrossRefGoogle Scholar
  32. 32.
    Bhaya D, Grossman AR, Steunou A-S, Khuri N, Cohan FM, Hamamura N, Melendrez MC, Bateson MM, Ward DM, Heidelberg JF (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1:703–713PubMedCrossRefGoogle Scholar
  33. 33.
    Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877PubMedGoogle Scholar
  34. 34.
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959PubMedCrossRefGoogle Scholar
  35. 35.
    Frank D (2008) XplorSeq: a software environment for integrated management and phylogenetic analysis of metagenomic sequence data. BMC Bioinformatics 9:420PubMedCrossRefGoogle Scholar
  36. 36.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  37. 37.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, Buchner T, Lai S, Steppi G, Jobb W, Förster I, Brettske S, Gerber AW, Ginhart O, Gross S, Grumann S, Hermann R, Jost A, König T, Liss R, Lüßmann M, May B, Nonhoff B, Reichel R, Strehlow A, Stamatakis N, Stuckmann A, Vilbig M, Lenke T, Ludwig AB, Schleifer K (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  38. 38.
    Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  39. 39.
    Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. Ecol FEMS Microbiol 47:161–177CrossRefGoogle Scholar
  40. 40.
    Magurran AE (2004) Measuring biological diversity. Blackwell Publishing Company, BostonGoogle Scholar
  41. 41.
    Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinforma (Oxf, Engl) 21:456–463CrossRefGoogle Scholar
  42. 42.
    Kuczynski J, Costello EK, Nemergut DR, Zaneveld J, Lauber CL, Knights D, Koren O, Fierer N, Kelley ST, Ley RE, Gordon JI, Knight R (2010) Direct sequencing of the human microbiome readily reveals community differences. Genome Biol 11:210PubMedCrossRefGoogle Scholar
  43. 43.
    Ferris M, Ruff-Roberts A, Kopczynski E, Bateson M, Ward D (1996) Enrichment culture and microscopy conceal diverse thermophilic synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050PubMedGoogle Scholar
  44. 44.
    Ramsing NB, Ferris MJ, Ward DM (2000) Highly ordered vertical structure of synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66:1038–1049PubMedCrossRefGoogle Scholar
  45. 45.
    Xia Y, Kong Y, Nielsen PH (2007) In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol Ecol 60:156–165PubMedCrossRefGoogle Scholar
  46. 46.
    de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818PubMedCrossRefGoogle Scholar
  47. 47.
    Spear JR, Ley RE, Berger AB, Pace NR (2003) Complexity in natural microbial ecosystems: the Guerrero Negro experience. Biol Bull 204:168–173PubMedCrossRefGoogle Scholar
  48. 48.
    Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695PubMedCrossRefGoogle Scholar
  49. 49.
    Feazel LM, Spear JR, Berger AB, Harris JK, Frank DN, Ley RE, Pace NR (2008) Eucaryotic diversity in a hypersaline microbial mat. Appl Environ Microbiol 74:329–332PubMedCrossRefGoogle Scholar
  50. 50.
    Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of Archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810PubMedCrossRefGoogle Scholar
  51. 51.
    Valiela I (1995) Marine ecological processes. Springer, BerlinGoogle Scholar
  52. 52.
    Baumgartner LK, Dupraz C, Buckley DH, Spear JR, Pace NR, Visscher PT (2009) Microbial species richness and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithification. Astrobiology 9:861–874PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kimberly A. Ross
    • 1
  • Leah M. Feazel
    • 1
    • 2
  • Charles E. Robertson
    • 1
  • Babu Z. Fathepure
    • 3
  • Katherine E. Wright
    • 1
  • Rebecca M. Turk-MacLeod
    • 1
    • 4
  • Mallory M. Chan
    • 1
    • 5
  • Nicole L. Held
    • 1
    • 6
  • John R. Spear
    • 7
  • Norman R. Pace
    • 1
  1. 1.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA
  2. 2.Division of Infectious Diseases, Department of MedicineUniversity of Colorado DenverAuroraUSA
  3. 3.Department of Microbiology & Molecular GeneticsOklahoma State UniversityStillwaterUSA
  4. 4.FAS Center for Systems BiologyHarvard UniversityCambridgeUSA
  5. 5.School of MedicineUniversity of Colorado DenverAuroraUSA
  6. 6.Department of MicrobiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.Department of Civil and Environmental EngineeringColorado School of MinesGoldenUSA

Personalised recommendations