Microbial Ecology

, Volume 63, Issue 2, pp 267–281 | Cite as

The Fibrobacteres: an Important Phylum of Cellulose-Degrading Bacteria

  • Emma Ransom-Jones
  • David L. Jones
  • Alan J. McCarthy
  • James E. McDonaldEmail author


The phylum Fibrobacteres currently comprises one formal genus, Fibrobacter, and two cultured species, Fibrobacter succinogenes and Fibrobacter intestinalis, that are recognised as major bacterial degraders of lignocellulosic material in the herbivore gut. Historically, members of the genus Fibrobacter were thought to only occupy mammalian intestinal tracts. However, recent 16S rRNA gene-targeted molecular approaches have demonstrated that novel centres of variation within the genus Fibrobacter are present in landfill sites and freshwater lakes, and their relative abundance suggests a potential role for fibrobacters in cellulose degradation beyond the herbivore gut. Furthermore, a novel subphylum within the Fibrobacteres has been detected in the gut of wood-feeding termites, and proteomic analyses have confirmed their involvement in cellulose hydrolysis. The genome sequence of F. succinogenes rumen strain S85 has recently suggested that within this group of organisms a “third” way of attacking the most abundant form of organic carbon in the biosphere, cellulose, has evolved. This observation not only has evolutionary significance, but the superior efficiency of anaerobic cellulose hydrolysis by Fibrobacter spp., in comparison to other cellulolytic rumen bacteria that typically utilise membrane-bound enzyme complexes (cellulosomes), may be explained by this novel cellulase system. There are few bacterial phyla with potential functional importance for which there is such a paucity of phenotypic and functional data. In this review, we highlight current knowledge of the Fibrobacteres phylum, its taxonomy, phylogeny, ecology and potential as a source of novel glycosyl hydrolases of biotechnological importance.


Cellulase Landfill Site Cellulolytic Enzyme Cellulose Hydrolysis Cellulose Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research on fibrobacters by the authors has been funded by the Natural Environment Research Council (AJM and JEM) and the Systematics Association’s SynTax award scheme, supported by the Linnean Society of London, BBSRC and NERC (JEM). ERJ is supported by a 125th Anniversary Scholarship at Bangor University.


  1. 1.
    Amann RI, Lin CH, Key R, Montgomery L, Stahl DA (1992) Diversity among Fibrobacter isolates—towards a phylogenetic classification. Syst Appl Microbiol 15:23–31CrossRefGoogle Scholar
  2. 2.
    An DD, Dong XZ, Dong ZY (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 11:207–215PubMedCrossRefGoogle Scholar
  3. 3.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736PubMedCrossRefGoogle Scholar
  4. 4.
    Atasoglu C, Newbold CJ, Wallace RJ (2001) Incorporation of N-15 ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17. Appl Environ Microbiol 67:2819–2822PubMedCrossRefGoogle Scholar
  5. 5.
    Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554PubMedCrossRefGoogle Scholar
  6. 6.
    Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struc Biol 8:548–557CrossRefGoogle Scholar
  7. 7.
    Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotech 18:237–245PubMedCrossRefGoogle Scholar
  8. 8.
    Benoit L, Cailliez C, Petitdemange E, Gitton J (1992) Isolation of cellulolytic mesophilic clostridia from a municipal solid-waste digester. Microbial Ecol 23:117–125CrossRefGoogle Scholar
  9. 9.
    Bookter TJ, Ham RK (1982) Stabilization of solid-waste in landfills. J Env Eng Div-Asce 108:1089–1100Google Scholar
  10. 10.
    Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. P Natl Acad Sci USA 106:1948–1953CrossRefGoogle Scholar
  11. 11.
    Bryant MP, Robinson IM, Chu H (1959) Observations on the nutrition of Bacteroides succinogenes—a ruminal cellulolytic bacterium. J Dairy Sci 42:1831–1847CrossRefGoogle Scholar
  12. 12.
    Burrell PC, O'Sullivan C, Song H, Clarke WP, Blackall LL (2004) Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol 70:2414–2419PubMedCrossRefGoogle Scholar
  13. 13.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238CrossRefGoogle Scholar
  14. 14.
    Cato EP, Salmon CW (1976) Transfer of Bacteroides clostridiiformis subsp clostridiiformis (Burri and Ankersmit) Holdeman and Moore and Bacteroides clostridiiformis subsp girans (Prevot) Holdeman and Moore to genus Clostridium as Clostridium clostridiiforme (Burri and Ankersmit) comb nov—emendation of description and designation of neotype strain. Int J Syst Bacteriol 26:205–211CrossRefGoogle Scholar
  15. 15.
    Chen BY, Wang HT (2008) Utility of enzymes from Fibrobacter succinogenes and Prevotella ruminicola as detergent additives. J Ind Microbiol Biot 35:923–930CrossRefGoogle Scholar
  16. 16.
    Cheng KJ, Stewart CS, Dinsdale D, Costerton JW (1984) Electron-microscopy of bacteria involved in the digestion of plant-cell walls. Anim Feed Sci Tech 10:93–120CrossRefGoogle Scholar
  17. 17.
    Chin KJ, Rainey FA, Janssen PH, Conrad R (1998) Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Syst Appl Microbiol 21:185–200CrossRefGoogle Scholar
  18. 18.
    Christophe G, Guiavarch E, Creuly C, Dussap CG (2009) Growth monitoring of Fibrobacter succinogenes by pressure measurement. Bioprocess Biosyst Eng 32:123–128PubMedCrossRefGoogle Scholar
  19. 19.
    Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:169–172CrossRefGoogle Scholar
  20. 20.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  21. 21.
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145CrossRefGoogle Scholar
  22. 22.
    Daly K, Shirazi-Beechey SP (2003) Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora. FEMS Microbiol Ecol 44:243–252PubMedCrossRefGoogle Scholar
  23. 23.
    Daly K, Stewart CS, Flint HJ, Shirazi-Beechey SP (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151CrossRefGoogle Scholar
  24. 24.
    Davies ME (1964) Cellulolytic bacteria isolated from large intestine of horse. J Appl Bacteriol 27:373–378CrossRefGoogle Scholar
  25. 25.
    Dehority BA (1963) Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J Dairy Sci 46:217–222CrossRefGoogle Scholar
  26. 26.
    Dehority BA (1969) Pectin-fermenting bacteria isolated from bovine rumen. J Bacteriol 99:189–196PubMedGoogle Scholar
  27. 27.
    Dehority BA (1993) Forage cell wall structure and digestibility. Jung HG, Buxton D R, Hatfield RD, Ralph J (ed) American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Wisconsin, pp 425–453Google Scholar
  28. 28.
    Denman SE, McSweeney CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582PubMedCrossRefGoogle Scholar
  29. 29.
    DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:394–399CrossRefGoogle Scholar
  30. 30.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  31. 31.
    Fields MW, Mallik S, Russell JB (2000) Fibrobacter succinogenes S85 ferments ball-milled cellulose as fast as cellobiose until cellulose surface area is limiting. Appl Microbiol Biot 54:570–574CrossRefGoogle Scholar
  32. 32.
    Forano E, Delort AM, Matulova M (2008) Carbohydrate metabolism in Fibrobacter succinogenes: what NMR tells us. Microb Ecol Health D 20:94–102CrossRefGoogle Scholar
  33. 33.
    Forsberg CW, Cheng KJ, White BA (1997) Polysaccharide degradation in the rumen and large intestine. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology, vol 1. Chapman & Hall, New York, pp 319–379CrossRefGoogle Scholar
  34. 34.
    Gong JH, Forsberg CW (1989) Factors affecting adhesion of Fibrobacter succinogenes subsp succinogenes S85 and adherence-defective mutants to cellulose. Appl Environ Microbiol 55:3039–3044PubMedGoogle Scholar
  35. 35.
    Gordon DA, Giovannoni SJ (1996) Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Appl Environ Microbiol 62:1171–1177PubMedGoogle Scholar
  36. 36.
    Groleau D, Forsberg CW (1983) Partial characterization of the extracellular carboxymethylcellulase activity produced by the rumen bacterium Bacteroides succinogenes. Can J Microbiol 29:504–517PubMedCrossRefGoogle Scholar
  37. 37.
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  38. 38.
    Halliwell G, Bryant MP (1963) Cellulolytic activity of pure strains of bacteria from rumen of cattle. J Gen Microbiol 32:441–448PubMedGoogle Scholar
  39. 39.
    Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo SJ, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467PubMedCrossRefGoogle Scholar
  40. 40.
    Hobson PN, Wallace RJ (1982) Microbial ecology and activities in the rumen. Crc Cr Rev Microbiol 9:165–225CrossRefGoogle Scholar
  41. 41.
    Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl Environ Microbiol 72:6780–6788PubMedCrossRefGoogle Scholar
  42. 42.
    Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599PubMedCrossRefGoogle Scholar
  43. 43.
    Huang LN, Zhou H, Zhu S, Qu LH (2004) Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol Ecol 50:175–183PubMedCrossRefGoogle Scholar
  44. 44.
    Huang LN, Zhu S, Zhou H, Qu LH (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242:297–303PubMedCrossRefGoogle Scholar
  45. 45.
    Huang SJ, Chen MJ, Yueh PY, Yu B, Zhao X, Liu JR (2011) Display of Fibrobacter succinogenes beta-glucanase on the cell surface of Lactobacillus reuteri. J Agr Food Chem 59:1744–1751CrossRefGoogle Scholar
  46. 46.
    Huang Y, Niu BF, Gao Y, Fu LM, Li WZ (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682PubMedCrossRefGoogle Scholar
  47. 47.
    Hungate RE (1947) Studies on cellulose fermentation: III. The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. J Bacteriol 53:631–645PubMedGoogle Scholar
  48. 48.
    Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49PubMedGoogle Scholar
  49. 49.
    Hungate RE (1966) The rumen and its microbes. Academic, New YorkGoogle Scholar
  50. 50.
    Hungate RE, Phillips GD, McGregor A, Hungate DP, Buechner HK (1959) Microbial fermentation in certain mammals. Science 130:1192–1194PubMedCrossRefGoogle Scholar
  51. 51.
    Isar J, Agarwal L, Saran S, Saxena RK (2006) A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Bioresource Technol 97:1443–1448CrossRefGoogle Scholar
  52. 52.
    Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306CrossRefGoogle Scholar
  53. 53.
    Julliand V, de Vaux A, Millet L, Fonty G (1999) Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol 65:3738–3741PubMedGoogle Scholar
  54. 54.
    Jun HS, Qi M, Gong J, Egbosimba EE, Forsberg CW (2007) Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J Bacteriol 189:6806–6815PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi Y, Shinkai T, Koike S (2008) Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion—review. Folia Microbiol 53:195–200CrossRefGoogle Scholar
  56. 56.
    Koike S, Kobayashi Y (2009) Fibrolytic rumen bacteria: their ecology and functions. Asian Austral J Anim 22:131–138Google Scholar
  57. 57.
    Koike S, Pan J, Suzuki T, Takano T, Oshima C, Kobayashi Y, Tanaka K (2004) Ruminal distribution of the cellulolytic bacterium Fibrobacter succinogenes in relation to its phylogenetic grouping. Anim Sci J 75:417–422CrossRefGoogle Scholar
  58. 58.
    Koike S, Yabuki H, Kobayashi Y (2007) Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Anim Sci J 78:135–141CrossRefGoogle Scholar
  59. 59.
    Larue R, Yu ZT, Parisi VA, Egan AR, Morrison M (2005) Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 7:530–543PubMedCrossRefGoogle Scholar
  60. 60.
    Latham MJ, Sharpe ME, Sutton JD (1971) Microbial flora of rumen of cows fed hay and high cereal rations and its relationship to rumen fermentation. J Appl Bacteriol 34:425–434PubMedCrossRefGoogle Scholar
  61. 61.
    Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426PubMedCrossRefGoogle Scholar
  62. 62.
    Leschine SB, Canaleparola E (1983) Mesophilic cellulolytic clostridia from fresh-water environments. Appl Environ Microbiol 46:728–737PubMedGoogle Scholar
  63. 63.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCrossRefGoogle Scholar
  64. 64.
    Li QA, Siles JA, Thompson IP (2010) Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl Microbiol Biot 88:671–678CrossRefGoogle Scholar
  65. 65.
    Li WZ, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659PubMedCrossRefGoogle Scholar
  66. 66.
    Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747CrossRefGoogle Scholar
  67. 67.
    Lin CZ, Flesher B, Capman WC, Amann RI, Stahl DA (1994) Taxon specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst Appl Microbiol 17:418–424CrossRefGoogle Scholar
  68. 68.
    Lin CZ, Stahl DA (1995) Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl Environ Microbiol 61:1348–1351PubMedGoogle Scholar
  69. 69.
    Ling JR, Armstead IP (1995) The in-vitro uptake and metabolism of peptides and amino-acids by 5 species of rumen bacteria. J Appl Bacteriol 78:116–124PubMedCrossRefGoogle Scholar
  70. 70.
    Lissens G, Verstraete W, Albrecht T, Brunner G, Creuly C, Seon J, Dussap G, Lasseur C (2004) Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes. Biodegradation 15:173–183PubMedCrossRefGoogle Scholar
  71. 71.
    Ludwig W, Schleifer KH (2001) In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 49–65CrossRefGoogle Scholar
  72. 72.
    Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer KH (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568PubMedCrossRefGoogle Scholar
  73. 73.
    Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323PubMedCrossRefGoogle Scholar
  74. 74.
    Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16:577–583PubMedCrossRefGoogle Scholar
  75. 75.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCrossRefGoogle Scholar
  76. 76.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Progr 15:777–793CrossRefGoogle Scholar
  77. 77.
    Macy JM, Farrand JR, Montgomery L (1982) Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Appl Environ Microbiol 44:1428–1434PubMedGoogle Scholar
  78. 78.
    Madden RH, Bryder MJ, Poole NJ (1982) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium papyrosolvens sp-nov. Int J Syst Bacteriol 32:87–91CrossRefGoogle Scholar
  79. 79.
    Mandels M (1985) Applications of cellulases. Biochem Soc T 13:414–416Google Scholar
  80. 80.
    Martinez AT, Ruiz-Duenas FJ, Martinez MJ, del Rio JC, Gutierrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotech 20:348–357PubMedCrossRefGoogle Scholar
  81. 81.
    Matsui H, Ban-Tokuda T, Wakita M (2010) Detection of fiber-digesting bacteria in the ceca of ostrich using specific primer sets. Curr Microbiol 60:112–116PubMedCrossRefGoogle Scholar
  82. 82.
    Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M (2010) Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe 16:83–93PubMedCrossRefGoogle Scholar
  83. 83.
    McDonald JE, de Menezes AB, Allison HE, McCarthy AJ (2009) Molecular biological detection and quantification of novel Fibrobacter populations in freshwater lakes. Appl Environ Microbiol 75:5148–5152PubMedCrossRefGoogle Scholar
  84. 84.
    McDonald JE, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ Microbiol 10:1310–1319PubMedCrossRefGoogle Scholar
  85. 85.
    Miron J, Benghedalia D (1993) Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Can J Microbiol 39:780–786PubMedCrossRefGoogle Scholar
  86. 86.
    Miron J, Benghedalia D (1993) Digestion of structural polysaccharides of panicum and vetch hays by the rumen bacterial strains Fibrobacter succinogenes Bl2 and Butyrivibrio fibrisolvens D1. Appl Microbiol Biot 39:756–759CrossRefGoogle Scholar
  87. 87.
    Miron J, Benghedalia D (1993) Untreated and delignified cotton stalks as model substrates for degradation and utilization of cell-wall monosaccharide components by defined ruminal cellulolytic bacteria. Bioresource Technol 43:241–247CrossRefGoogle Scholar
  88. 88.
    Miron J, Yokoyama MT, Lamed R (1989) Bacterial-cell surface-structures involved in lucerne cell-wall degradation by pure cultures of cellulolytic rumen bacteria. Appl Microbiol Biot 32:218–222CrossRefGoogle Scholar
  89. 89.
    Moir RJ (1965) The comparative physiology of ruminant-like animals. In: Dougherty RW (ed) Physiology of digestion in the ruminant. Butterworth, Washington DC, pp 1–14Google Scholar
  90. 90.
    Monserrate E, Leschine SB, Canale-Parola E (2001) Clostridium hungatei sp nov., a mesophilic, N-2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Micr 51:123–132Google Scholar
  91. 91.
    Montgomery L, Flesher B, Stahl D (1988) Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen-nov as Fibrobacter succinogenes comb nov and description of Fibrobacter intestinalis sp-nov. Int J Syst Bacteriol 38:430–435CrossRefGoogle Scholar
  92. 92.
    Montgomery L, Macy JM (1982) Characterization of rat cecum cellulolytic bacteria. Appl Environ Microbiol 44:1435–1443PubMedGoogle Scholar
  93. 93.
    Mosoni P, Chaucheyras-Durand F, Bera-Maillet C, Forano E (2007) Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J Appl Microbiol 103:2676–2685PubMedCrossRefGoogle Scholar
  94. 94.
    Murray WD, Hofmann L, Campbell NL, Madden RH (1986) Clostridium lentocellum sp-nov, a cellulolytic species from river sediment containing paper-mill waste. Syst Appl Microbiol 8:181–184CrossRefGoogle Scholar
  95. 95.
    Nusslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626PubMedGoogle Scholar
  96. 96.
    O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRefGoogle Scholar
  97. 97.
    Ozutsumi Y, Tajima K, Takenaka A, Itabashi H (2006) Real-time PCR detection of the effects of protozoa on rumen bacteria in cattle. Curr Microbiol 52:158–162PubMedCrossRefGoogle Scholar
  98. 98.
    Paster BJ, Ludwig W, Weisburg WG, Stackebrandt E, Hespell RB, Hahn CM, Reichenbach H, Stetter KO, Woese CR (1985) A phylogenetic grouping of the Bacteroides, Cytophagas, and certain Flavobacteria. Syst Appl Microbiol 6:34–42CrossRefGoogle Scholar
  99. 99.
    Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V, McLellan M, Stevens BM, Boylen CW, Nierzwicki-Bauer SA (2008) Bacterial community structure of acid-impacted lakes: what controls diversity? Appl Environ Microbiol 74:1856–1868PubMedCrossRefGoogle Scholar
  100. 100.
    Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, Morrison M, Forsberg CW (2005) Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 187:3739–3751PubMedCrossRefGoogle Scholar
  101. 101.
    Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, Morrison M, Forsberg CW (2008) Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization. Appl Environ Microbiol 74:987–993PubMedCrossRefGoogle Scholar
  102. 102.
    Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497PubMedGoogle Scholar
  103. 103.
    Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845PubMedCrossRefGoogle Scholar
  104. 104.
    Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155PubMedCrossRefGoogle Scholar
  105. 105.
    Shah HN, Collins MD (1983) Genus Bacteroides—a chemotaxonomical perspective. J Appl Bacteriol 55:403–416PubMedCrossRefGoogle Scholar
  106. 106.
    Shinkai T, Kobayashi Y (2007) Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl Environ Microbiol 73:1646–1652PubMedCrossRefGoogle Scholar
  107. 107.
    Shinkai T, Ohji R, Matsumoto N, Kobayashi Y (2009) Fibrolytic capabilities of ruminal bacterium Fibrobacter succinogenes in relation to its phylogenetic grouping. FEMS Microbiol Lett 294:183–190PubMedCrossRefGoogle Scholar
  108. 108.
    Shiratori H, Reno H, Ayame S, Kataoka N, Miya A, Hosono K, Beppu T, Ueda K (2006) Isolation and characterization of a new Clostridium sp that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol 72:3702–3709PubMedCrossRefGoogle Scholar
  109. 109.
    Sipat A, Taylor KA, Lo RYC, Forsberg CW, Krell PJ (1987) Molecular-cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli. Appl Environ Microbiol 53:477–481PubMedGoogle Scholar
  110. 110.
    Sizova MV, Panikov NS, Tourova TP, Flanagan PW (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45:301–315PubMedCrossRefGoogle Scholar
  111. 111.
    Skinner FA (1960) The isolation of anaerobic cellulose-decomposing bacteria from soil. J Gen Microbiol 22:539–554PubMedGoogle Scholar
  112. 112.
    Sleat R, Mah RA, Robinson R (1984) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp-nov. Appl Environ Microbiol 48:88–93PubMedGoogle Scholar
  113. 113.
    Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54:1079–1084PubMedGoogle Scholar
  114. 114.
    Stewart CS, Bryant MP (1988) The rumen microbial ecosystem. Hobson PN (ed) Elsevier Appl Sci, New York, pp 21–75Google Scholar
  115. 115.
    Stewart CS, Duncan SH (1985) The effect of avoparcin on cellulolytic bacteria of the ovine rumen. J Gen Microbiol 131:427–435Google Scholar
  116. 116.
    Stewart CS, Flint HJ (1989) Bacteroides (Fibrobacter) succinogenes, a cellulolytic anaerobic bacterium from the gastrointestinal-tract. Appl Microbiol Biotech 30:433–439Google Scholar
  117. 117.
    Stewart CS, Paniagua C, Dinsdale D, Cheng KJ, Garrow SH (1981) Selective isolation and characteristics of Bacteriodes succinogenes from the rumen of a cow. Appl Environ Microbiol 41:504–510PubMedGoogle Scholar
  118. 118.
    Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. Plos One 6:e18814. doi: 10.1371/journal.pone.0018814 PubMedCrossRefGoogle Scholar
  119. 119.
    Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1–11CrossRefGoogle Scholar
  120. 120.
    Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774PubMedCrossRefGoogle Scholar
  121. 121.
    Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y (1999) Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29:159–169CrossRefGoogle Scholar
  122. 122.
    Tajima K, Arai S, Ogata K, Nagamine T, Matsui H, Nakamura M, Aminov RI, Benno Y (2000) Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273–284CrossRefGoogle Scholar
  123. 123.
    Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339PubMedCrossRefGoogle Scholar
  124. 124.
    Van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049–2053PubMedCrossRefGoogle Scholar
  125. 125.
    Varel VH, Fryda SJ, Robinson IM (1984) Cellulolytic bacteria from pig large-intestine. Appl Environ Microbiol 47:219–221PubMedGoogle Scholar
  126. 126.
    Varel VH, Jung HJG (1986) Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation. Appl Environ Microbiol 52:275–280PubMedGoogle Scholar
  127. 127.
    Vogels GD (1979) Global cycle of methane. A Van Leeuw J Microb 45:347–352CrossRefGoogle Scholar
  128. 128.
    Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang XN, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  129. 129.
    Weber S, Lueders T, Friedrich MW, Conrad R (2001) Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 38:11–20CrossRefGoogle Scholar
  130. 130.
    Weimer PJ, French AD, Calamari TA (1991) Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol 57:3101–3106PubMedGoogle Scholar
  131. 131.
    Westlake K, Archer DB, Boone DR (1995) Diversity of cellulolytic bacteria in landfill. J Appl Bacteriol 79:73–78CrossRefGoogle Scholar
  132. 132.
    Whitford MF, Forster RJ, Beard CE, Gong JH, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163PubMedCrossRefGoogle Scholar
  133. 133.
    Wilson DB (2008) Three microbial strategies for plant cell wall degradation. In: Wiegel J, Maier R, Adams M (eds) Incredible anaerobes: From physiology to genomics to fuels. Wiley-Blackwell, Oxford, pp 289–297Google Scholar
  134. 134.
    Wilson DB (2009) Evidence for a novel mechanism of microbial cellulose degradation. Cellulose 16:723–727CrossRefGoogle Scholar
  135. 135.
    Woese CR, Stackebrandt E, Macke TJ, Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Syst Appl Microbiol 6:143–151PubMedCrossRefGoogle Scholar
  136. 136.
    Wu CF, Yang F, Gao RC, Huang ZX, Xu B, Dong YY, Hong T, Tang XH (2010) Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences. Af J Biotechnol 9:6278–6289Google Scholar
  137. 137.
    Yilmaz S, Haroon MF, Rabkin BA, Tyson GW, Hugenholtz P (2010) Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J 4:1352–1356PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Emma Ransom-Jones
    • 1
  • David L. Jones
    • 2
  • Alan J. McCarthy
    • 3
  • James E. McDonald
    • 1
    Email author
  1. 1.School of Biological SciencesBangor UniversityBangorUK
  2. 2.School of Environment, Natural Resources and GeographyBangor UniversityBangorUK
  3. 3.Microbiology Research Group, Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations