Microbial Ecology

, Volume 63, Issue 4, pp 856–864 | Cite as

Genotypic Distribution of a Specialist Model Microorganism, Methanosaeta, along an Estuarine Gradient: Does Metabolic Restriction Limit Niche Differentiation Potential?

  • Franck Carbonero
  • Brian B. Oakley
  • Robert J. Hawkins
  • Kevin J. PurdyEmail author
Environmental Microbiology


A reductionist ecological approach of using a model genus was adopted in order to understand how microbial community structure is driven by metabolic properties. The distribution along an estuarine gradient of the highly specialised genus Methanosaeta was investigated and compared to the previously determined distribution of the more metabolically flexible Desulfobulbus. Methanosaeta genotypic distribution along the Colne estuary (Essex, UK) was determined by DNA- and RNA-based denaturing gradient gel electrophoresis and 16S rRNA gene sequence analyses. Methanosaeta distribution was monotonic, with a consistently diverse community and no apparent niche partitioning either in DNA or RNA analyses. This distribution pattern contrasts markedly with the previously described niche partitioning and sympatric differentiation of the model generalist, Desulfobulbus. To explain this difference, it is hypothesised that Methanosaeta’s strict metabolic needs limit its adaptation potential, thus populations do not partition into spatially distinct groups and so do not appear to be constrained by gross environmental factors such as salinity. Thus, at least for these two model genera, it appears that metabolic flexibility may be an important factor in spatial distribution and this may be applicable to other microbes.


Clone Library Methanosarcina Methanosaeta Partial Mantel Test Dissimilarity Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by a Marie Curie Excellence Team Grant MicroComXT (MEXT-CT-2005-024112) to KJP. Clones were sequenced at the Sequencing Facility, Natural History Museum, London, UK.


  1. 1.
    Boone DR, Mah RA (2001) Methanosarcina. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and deeply branching and phototrophic Bacteria. Springer, New York, pp 269–276Google Scholar
  2. 2.
    Carbonero F, Oakley BB, Purdy KJ (2010) Improving the isolation of anaerobes on solid media: the example of the fastidious Methanosaeta. J Microbiol Meth 80:203–205CrossRefGoogle Scholar
  3. 3.
    Cermeno P, Falkowski PG (2009) Controls on diatom biogeography in the ocean. Science 325:1539–1541PubMedCrossRefGoogle Scholar
  4. 4.
    Crump BC, Hopkinson CS, Sogin ML, Hobbie JE (2004) Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Appl Environ Microbiol 70:1494–1505PubMedCrossRefGoogle Scholar
  5. 5.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072PubMedCrossRefGoogle Scholar
  6. 6.
    Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930CrossRefGoogle Scholar
  7. 7.
    Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264PubMedCrossRefGoogle Scholar
  8. 8.
    Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045PubMedCrossRefGoogle Scholar
  9. 9.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631PubMedCrossRefGoogle Scholar
  10. 10.
    Hawkins RJ, Purdy KJ (2007) Genotypic distribution of an indigenous model microorganism along an estuarine gradient. FEMS Microbiol Ecol 62:187–194PubMedCrossRefGoogle Scholar
  11. 11.
    Jetten MSM, Stams AJM, Zehnder AJB (1990) Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344CrossRefGoogle Scholar
  12. 12.
    Kassen R, Rainey PB (2004) The ecology and genetics of microbial diversity. Annu Rev Microbiol 58:207–231PubMedCrossRefGoogle Scholar
  13. 13.
    Kuever J, Rainey FA, Widdel F (2005) Desulfobacter. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology volume 2: the Proteobacteria; part C the Alpha-, Beta-, Delta and Epsilon-proteobacteria. Springer, New York, pp 961–964CrossRefGoogle Scholar
  14. 14.
    Kuever J, Rainey FA, Widdel F (2005) Desulfobulbus. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology volume 2: the Proteobacteria; part C the Alpha-, Beta-, Delta and Epsilon-proteobacteria. Springer, New York, pp 988–992CrossRefGoogle Scholar
  15. 15.
    Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120PubMedCrossRefGoogle Scholar
  16. 16.
    Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinforma 7:371CrossRefGoogle Scholar
  17. 17.
    Lubchenco J (1991) The sustainable biosphere initiative—an ecological research agenda—a report from the Ecological Society of America. Ecology 72:371–412CrossRefGoogle Scholar
  18. 18.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  19. 19.
    Mantel N, Fleiss JL (1980) Minimum expected cell-size requirements for the Mantel–Haenszel one-degree-of-freedom chi-square test and a related rapid procedure. Am J Epidemiol 112:129–134PubMedGoogle Scholar
  20. 20.
    Munson MA, Nedwell DB, Embley TM (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733PubMedGoogle Scholar
  21. 21.
    Oakley BB, Carbonero F, van der Gast CJ, Hawkins RJ, Purdy KJ (2010) Evolutionary divergence and biogeography of sympatric niche-differentiated bacterial populations. ISME J 4:488–497PubMedCrossRefGoogle Scholar
  22. 22.
    Oakley BB, Carbonero F, Dowd SE, Hawkins RH, Purdy KJ (2011) Contrasting patterns of niche partitioning between two anaerobic terminal oxidizers of organic matter. ISME J doi: 10.1038/ismej.2011.165
  23. 23.
    Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373PubMedGoogle Scholar
  24. 24.
    Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (Methanothrix concilii) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82CrossRefGoogle Scholar
  25. 25.
    Patel GB (2001) Methanosaeta. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and deeply branching and phototrophic Bacteria. Springer, New York, pp 289–294Google Scholar
  26. 26.
    Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  27. 27.
    Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392PubMedCrossRefGoogle Scholar
  28. 28.
    Prosser JI, Head IM (2007) Microorganisms, macroorganisms and ecology. FEMS Microbiol Ecol 62:133–134CrossRefGoogle Scholar
  29. 29.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  30. 30.
    Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  31. 31.
    Purdy KJ, Embley TM, Takii S, Nedwell DB (1996) Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl Environ Microbiol 62:3905–3907PubMedGoogle Scholar
  32. 32.
    Purdy KJ, Munson MA, Nedwell DB, Embley TM (2002) Comparison of the molecular diversity of the methanogenic community at the brackish and marine ends of a UK estuary. FEMS Microbiol Ecol 39:17–21PubMedCrossRefGoogle Scholar
  33. 33.
    Purdy KJ, Munson MA, Cresswell-Maynard T, Nedwell DB, Embley TM (2003) Use of 16S rRNA-targeted oligonucleotide probes to investigate function and phylogeny of sulphate—reducing bacteria and methanogenic archaea in a UK estuary. FEMS Microbiol Ecol 44:361–371PubMedCrossRefGoogle Scholar
  34. 34.
    Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595PubMedCrossRefGoogle Scholar
  35. 35.
    Purdy KJ (2005) Nucleic acid recovery from complex environmental samples. Meth Enzymol 397:271–292PubMedCrossRefGoogle Scholar
  36. 36.
    Schafer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. Meth Microbiol 30:425–468CrossRefGoogle Scholar
  37. 37.
    Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  38. 38.
    Silva SQ (2004) Activity and diversity of sulphate—reducing bacteria and methanogenic archaea in contrasting sediments from the River Colne estuary. University of Essex, ColchesterGoogle Scholar
  39. 39.
    Spooner GM (1947) The distribution of Gammarus species in estuaries. J Mar Biol Assoc 27:1–52CrossRefGoogle Scholar
  40. 40.
    Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074PubMedGoogle Scholar
  41. 41.
    Westermann P, Ahring BK, Mah RA (1989) Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl Environ Microbiol 55:514–515PubMedGoogle Scholar
  42. 42.
    Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Franck Carbonero
    • 1
    • 3
  • Brian B. Oakley
    • 1
    • 4
  • Robert J. Hawkins
    • 2
  • Kevin J. Purdy
    • 1
    Email author
  1. 1.School of Life SciencesUniversity of WarwickCoventryUK
  2. 2.Department of Biological SciencesUniversity of ReadingReadingUK
  3. 3.Department of Animal SciencesUniversity of Illinois at Urbana-ChampaignUrbana-ChampaignUSA
  4. 4.USDA Agricultural Research ServiceAthensUSA

Personalised recommendations