Microbial Ecology

, Volume 63, Issue 4, pp 844–855 | Cite as

Acidobacteria in Freshwater Ponds at Doñana National Park, Spain

  • Johannes Zimmermann
  • M. Carmen Portillo
  • Laura Serrano
  • Wolfgang Ludwig
  • Juan M. Gonzalez
Environmental Microbiology


The Acidobacteria show a widespread distribution in natural ecosystems. In this study, we analyzed the presence of Acidobacteria in freshwater ponds at Doñana National Park (southwestern Spain). Nucleic acid sequence analysis, quantitative, real-time RT-PCR, and fluorescence in situ hybridization (FISH) were carried out. Acidobacteria in these aquatic environments were investigated using their 16S and 23S rDNA sequences and acidobacterial specific primer pairs through phylogenetic approaches. The presence of up to five subdivisions of Acidobacteria was detected during this study. The analyzed ponds exhibited distinctive patterns of acidobacterial clades. In order to detect their role in ecosystem functions, metabolically active Acidobacteria were detected based upon rRNA analyses. Quantitative, real-time RT-PCR showed a low percentage of metabolically active Acidobacteria at suboxic zones within the water column covered by surface Fe-rich films. Oxygen-saturated areas showed around 4% of total bacterial RNA belonging to Acidobacteria both in the water column and the sediment surface. The morphology of the most abundant Acidobacteria was revealed by FISH as cocci generally in pairs or chains. Enrichment cultures were also obtained and indicated a putative metabolism based on aerobic and heterotrophic characteristics likely taking advantage of the abundant organic matter present at the investigated sites. These results represent a significant contribution toward understanding the distribution and ecological role of the phylum Acidobacteria in natural ecosystems, specifically at Doñana National Park freshwater ponds.


Bacterial Community Freshwater Pond Suboxic Zone Dilute Nutrient Broth Elevated Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by projects CGL2009-12328/BOS and CSD2009-00006 from the Spanish Ministry of Education and Science and by the Regional Government of Andalusia, Ref. BIO288. Participation of FEDER funds in these projects is acknowledged.


  1. 1.
    Alvarez S, Guerrero MC (2000) Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biol Biogeochem 32:1941–1951CrossRefGoogle Scholar
  2. 2.
    Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152PubMedCrossRefGoogle Scholar
  3. 3.
    Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedGoogle Scholar
  4. 4.
    Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116PubMedCrossRefGoogle Scholar
  5. 5.
    Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci USA 104:13455–13460PubMedCrossRefGoogle Scholar
  6. 6.
    Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483PubMedCrossRefGoogle Scholar
  7. 7.
    Briée C, Moreira D, López-García P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227PubMedCrossRefGoogle Scholar
  8. 8.
    Bryant DA, Garcia Costas AM, Maresca JA, Gomez Maqueo Chew A, Klatt CG, Bateson MM et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526PubMedCrossRefGoogle Scholar
  9. 9.
    Coates JD, Ellis D, Gaw CW, Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622PubMedCrossRefGoogle Scholar
  10. 10.
    Díaz-Paniagua C, Fernández-Zamudio R, Florencio M, García-Murillo P, Gómez-Rodríguez C, Portheault C et al (2010) Temporary ponds from Doñana National Park: a system of natural habitats for the preservation of aquatic flora and fauna. Limnetica 29:41–58Google Scholar
  11. 11.
    Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717PubMedCrossRefGoogle Scholar
  12. 12.
    Eichorst SA, Kuske CR, Schmidt TM (2011) Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl Environ Microbiol 77:586–596PubMedCrossRefGoogle Scholar
  13. 13.
    Eiler A, Olsson JA, Bertilsson S (2006) Diurnal variations in the auto- and heterotrophic activity of cyanobacterial phycospheres (Gloeotrichia echinulata) and the identity of attached bacteria. Freshwater Biol 51:298–311CrossRefGoogle Scholar
  14. 14.
    Engel AS, Porter ML, Stern LA, Quinlan S, Bennett PC (2004) Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic ‘Epsilonproteobacteria’. FEMS Microbiol Ecol 51:31–53PubMedCrossRefGoogle Scholar
  15. 15.
    Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120PubMedCrossRefGoogle Scholar
  16. 16.
    Fuchs BM, Glöckner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607PubMedCrossRefGoogle Scholar
  17. 17.
    Golterman HL (2004) The chemistry of phosphate and nitrogen compounds in sediments. Kluwer Academic, DordrechtGoogle Scholar
  18. 18.
    Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73PubMedCrossRefGoogle Scholar
  19. 19.
    Gonzalez JM, Saiz-Jimenez C (2004) Microbial diversity in biodeteriorated monuments as studied by denaturing gradient gel electrophoresis. J Sep Sci 27:174–180PubMedCrossRefGoogle Scholar
  20. 20.
    Gonzalez JM, Zimmermann J, Saiz-Jimenez C (2005) Ccode: evaluating putative chimeric sequences from PCR amplified products. Bioinformatics 21:333–337PubMedCrossRefGoogle Scholar
  21. 21.
    Grimalt JO, Yruela I, Saiz-Jimenez C, Toja J, Leeuw JW, Albaigés J (1991) Sedimentary lipid biogeochemistry of a hypertrophic alkaline lagoon. Geochim Cosmochim Acta 55:2555–2577CrossRefGoogle Scholar
  22. 22.
    Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedGoogle Scholar
  23. 23.
    Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396PubMedCrossRefGoogle Scholar
  24. 24.
    Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215PubMedCrossRefGoogle Scholar
  25. 25.
    Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2008) Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J 2:696–706PubMedCrossRefGoogle Scholar
  26. 26.
    Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7CrossRefGoogle Scholar
  27. 27.
    Kleinsteuber S, Müller F-D, Chatzinotas A, Wendt-Potthoff K, Harms H (2008) Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbiol Ecol 63:107–117PubMedCrossRefGoogle Scholar
  28. 28.
    Kulichevskaya IS, Suzina NE, Liesack W, Dedysh SN (2010) Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemoorganotroph from subdivision 3 of the Acidobacteria. Intl J Syst Evol Microbiol 60:301–306CrossRefGoogle Scholar
  29. 29.
    Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415CrossRefGoogle Scholar
  30. 30.
    Liesack W, Bak F, Kreft U, Stackebrandt E (1994) Holophaga foetida gen. nov., spec. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90PubMedGoogle Scholar
  31. 31.
    López T, Toja J, Gabellone NA (1991) Limnological comparison of two peridunar ponds in the Doñana National Park (Spain). Arch Hydrobiol 120:357–378Google Scholar
  32. 32.
    Ludwig W, Kirchhof G, Klugbauer N, Weizenegger M, Betzl D, Ehrmann M et al (1992) Complete 23S ribosomal RNA sequences of Gram-positive bacteria with a low DNA G + C content. Syst Appl Microbiol 15:487–501CrossRefGoogle Scholar
  33. 33.
    Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R et al (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190PubMedCrossRefGoogle Scholar
  34. 34.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Kumar Y et al (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  35. 35.
    Martín-Cuadrado AB, López-García P, Alba JC, Moreira D, Monticelli L, Strittmatter A et al (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 9:e914CrossRefGoogle Scholar
  36. 36.
    Meisinger DB, Zimmermann J, Ludwig W, Schleifer K-H, Wanner G, Schmid M et al (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9:1523–1534PubMedCrossRefGoogle Scholar
  37. 37.
    Molin S, Givskov M (1999) Application of molecular tools for in situ monitoring of bacterial growth activity. Environ Microbiol 1:383–391PubMedCrossRefGoogle Scholar
  38. 38.
    Neefs JM, van de Peer Y, Hendriks L, de Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 18:2237–2317PubMedCrossRefGoogle Scholar
  39. 39.
    Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Intl J Syst Evol Microbiol 60:2951–2959CrossRefGoogle Scholar
  40. 40.
    Pankratov TA, Serkebaeva YM, Kulichevskaya IS, Liesack W, Dedysh SN (2008) Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat. ISME J 2:551–560PubMedCrossRefGoogle Scholar
  41. 41.
    Portillo MC, Reina M, Serrano L, Saiz-Jimenez C, Gonzalez JM (2008) Role of specific microbial communities on the bioavailability of iron in the Doñana National Park. Environ Geochem Health 30:165–170PubMedCrossRefGoogle Scholar
  42. 42.
    Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  43. 43.
    Quaiser A, López-García P, Zivanovic Y, Henn MR, Rodriguez-Valera F, Moreira D (2008) Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton. Environ Microbiol 10:2704–2717PubMedCrossRefGoogle Scholar
  44. 44.
    Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Treusch AH, Eck J, Schleper C (2003) Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575PubMedCrossRefGoogle Scholar
  45. 45.
    Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394CrossRefGoogle Scholar
  46. 46.
    Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771PubMedCrossRefGoogle Scholar
  47. 47.
    Rutledge RG (2004) Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucl Acids Res 32:e178PubMedCrossRefGoogle Scholar
  48. 48.
    Sacks LA, Herman JS, Konikow LF, Vela AL (1992) Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain. J Hydrol 136:123–154CrossRefGoogle Scholar
  49. 49.
    Sait M, Hugenholtz P, Janssen PJ (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666PubMedCrossRefGoogle Scholar
  50. 50.
    Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70:4363–4366PubMedCrossRefGoogle Scholar
  51. 51.
    Serrano L, Reina M, Martín G, Reyes I, Arechederra A, León D, Toja J (2006) The aquatic systems of Doñana. Limnetica 25:11–32Google Scholar
  52. 52.
    Snaidr J, Amann R, Huber I, Ludwig W, Schleifer K-H (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedGoogle Scholar
  53. 53.
    Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  54. 54.
    Souza-Egipsy V, González-Toril E, Zettler E, Amaral-Zettler L, Aguilera A, Amils R (2008) Prokaryotic community structure in algal photosynthetic biofilms from extreme acidic streams in Río Tinto (Huelva, Spain). Int Microbiol 11:251–260PubMedGoogle Scholar
  55. 55.
    Spring S, Schulze R, Overmann J, Schleifer K-H (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiol Rev 24:573–590PubMedCrossRefGoogle Scholar
  56. 56.
    Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041PubMedCrossRefGoogle Scholar
  57. 57.
    van de Peer Y, Chapelle S, de Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucl Acids Res 24:3381–3391PubMedCrossRefGoogle Scholar
  58. 58.
    Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143PubMedCrossRefGoogle Scholar
  59. 59.
    Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65PubMedCrossRefGoogle Scholar
  60. 60.
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056PubMedCrossRefGoogle Scholar
  61. 61.
    Zimmermann J, Gonzalez JM, Saiz-Jimenez C, Ludwig W (2005) Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiol J 22:379–388CrossRefGoogle Scholar
  62. 62.
    Zimmermann J, Gonzalez JM, Saiz-Jimenez C (2006) Epilithic biofilms in Saint Callixtus Catacombs (Rome) harbour a broad spectrum of Acidobacteria. Ant van Leeuwenhoek 89203–208Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Johannes Zimmermann
    • 1
  • M. Carmen Portillo
    • 1
  • Laura Serrano
    • 2
  • Wolfgang Ludwig
    • 3
  • Juan M. Gonzalez
    • 1
  1. 1.Instituto de Recursos Naturales y AgrobiologiaCSICSevillaSpain
  2. 2.Department of Plant Biology and EcologyUniversity of SevillaSevillaSpain
  3. 3.Lehrstuhl für MikrobiologieTechnische Universität MünchenFreisingGermany

Personalised recommendations