Advertisement

Microbial Ecology

, Volume 63, Issue 1, pp 85–95 | Cite as

Microbial Community Changes Elicited by Exposure to Cyanobacterial Allelochemicals

  • Pedro N. Leão
  • Vitor Ramos
  • Micaela Vale
  • João P. Machado
  • Vitor M. Vasconcelos
Environmental Microbiology

Abstract

An increasing body of evidence points out that allelopathy may be an important process shaping microbial communities in aquatic ecosystems. Cyanobacteria have well-documented allelopathic properties, mainly derived from the evaluation of the activity of allelopathic extracts or pure compounds towards monocultures of selected target microorganisms. Consequently, little is known regarding the community dynamics of microorganisms associated with allelopathic interactions. In this laboratory-based study, a Microcystis spp.-dominated microbial community from a freshwater lake was exposed, for 15 days, to exudates from the cyanobacterium Oscillatoria sp. strain LEGE 05292 in laboratory conditions. This cyanobacterium is known to produce the allelochemicals portoamides, which were among the exuded compounds. The community composition was followed (by means of polymerase chain reaction followed by denaturing gradient gel electrophoresis and microscopic analyses) and compared to that of a non-exposed situation. Following exposure, clear differences in the community structure were observed, in particular for cyanobacteria and unicellular eukaryotic taxa. Interestingly, distinct Microcystis genotypes present in the community were differentially impacted by the exposure, highlighting the fine-scale dynamics elicited by the exudates. These results support a role for cyanobacterial allelochemicals in the structuring of aquatic microbial communities.

Keywords

Phytoplankton Synedra DGGE Band Allelopathic Activity Allelopathic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by a grant (SFRH/BD/28771/2006) to PNL from Fundação para a Ciência e a Tecnologia.

Supplementary material

248_2011_9939_MOESM1_ESM.doc (149 kb)
Table S1 Microscopy counts of phytoplankton in control and exposed flasks (N = 4) throughout the exposure experiment. Average and standard deviation (stdev) values are shown as cells⋅mL−1. (DOC 149 kb)
248_2011_9939_Fig5_ESM.jpg (270 kb)
Figure S1

DGGE gels obtained with 16S-EU, 16S-CYA and 18S amplicons. For each gel, loaded (from left to right) correspond to: marker, DO control (×2), DO treatment (×2), D6 control (×2), D6 exposed (×2), D15 control (×2), D15 exposed (×2). Boxes in dicate gel sections depicted in Fig. 3 (JPEG 270 kb)

248_2011_9939_MOESM2_ESM.tif (6.9 mb)
High-resolution image (TIFF 7024 kb)

References

  1. 1.
    Bozarth CS, Schwartz AD, Shepardson JW, Colwell FS, Dreher TW (2010) Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season. Appl Environ Microbiol 76:5207–5213PubMedCrossRefGoogle Scholar
  2. 2.
    Briand E, Escoffier N, Straub C, Sabart M, Quiblier C, Humbert JF (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (Cyanobacteria) population. ISME J 3:419–429PubMedCrossRefGoogle Scholar
  3. 3.
    Cox EJ (1996) Identification of freshwater diatoms from live material. Chapman & Hall, London, p 158Google Scholar
  4. 4.
    Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A 99:786–790PubMedCrossRefGoogle Scholar
  5. 5.
    Felsenstein J (1981) Evolutionary trees from DNA-sequences—a maximum-likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  6. 6.
    Fistarol GO, Legrand C, Graneli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125CrossRefGoogle Scholar
  7. 7.
    Fistarol GO, Legrand C, Selander E, Hummert C, Stolte W, Graneli E (2004) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35:45–56CrossRefGoogle Scholar
  8. 8.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  9. 9.
    Hay ME, Parker JD, Burkepile DE, Caudill CC, Wilson AE, Hallinan ZP, Chequer AD (2004) Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annu Rev Ecol Evol Syst 35:175–197CrossRefGoogle Scholar
  10. 10.
    Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212CrossRefGoogle Scholar
  11. 11.
    Hong SH, Bunge J, Leslin C, Jeon S, Epstein SS (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J 3:1365–1373PubMedCrossRefGoogle Scholar
  12. 12.
    John DM, Whitton BA, Brook AJ (2002) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci U S A 106:11177–11182PubMedCrossRefGoogle Scholar
  14. 14.
    Kardinaal WEA, Tonk L, Janse I, Hol S, Slot P, Huisman J, Visser PM (2007) Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol 73:2939–2946PubMedCrossRefGoogle Scholar
  15. 15.
    Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887PubMedCrossRefGoogle Scholar
  16. 16.
    Komarek J, Komarkova-Legnerova J, Sant’Anna CL, Azevedo MTD, Senna PAC (2002) Two common Microcystis species (Chroococcales, Cyanobacteria) from tropical America, including M. panniformis sp. nov. Cryptogamie Algol 23:159–177Google Scholar
  17. 17.
    Komárek J, Anagnostidis K (1998) In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Cyanoprokaryota, 1.Teil: Chroococcales. Gustav Fischer, Jena, p 548Google Scholar
  18. 18.
    Komárek J, Anagnostidis K (2005) In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Cyanoprokaryota, Part 2: Oscillatoriales. Spektrum Akademischer, Heidelberg, p 759Google Scholar
  19. 19.
    Kotai J (1972) Instructions for the preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research, Blindern, Oslo 11/69: pp 5Google Scholar
  20. 20.
    Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306PubMedCrossRefGoogle Scholar
  21. 21.
    Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathic activity of cyanobacteria on green microalgae at low cell densities. Eur J Phycol 44:347–355CrossRefGoogle Scholar
  22. 22.
    Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282PubMedCrossRefGoogle Scholar
  23. 23.
    Leão PN, Pereira AR, Liu W-T, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconcelos VM, Gerwick WH (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci U S A 107:11183–11188PubMedCrossRefGoogle Scholar
  24. 24.
    Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwat Biol 52:199–214CrossRefGoogle Scholar
  25. 25.
    Legrand C, Rengefors K, Fistarol GO, Graneli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419CrossRefGoogle Scholar
  26. 26.
    Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170CrossRefGoogle Scholar
  27. 27.
    Moreira J, Vasconcelos V, Pardal S (1999) Proposal for the use of aquatic macrophytes to reduce eutrophication in park lakes (Porto-Portugal). Revista Biol 17:217–227Google Scholar
  28. 28.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  29. 29.
    Neilan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697PubMedCrossRefGoogle Scholar
  30. 30.
    Nübel U, GarciaPichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  31. 31.
    Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the Rules of the Bacteriological Code. Int J Syst Evol Microbiol 51:873–879PubMedCrossRefGoogle Scholar
  32. 32.
    Paulino S, Valério E, Faria N, Fastner J, Welker M, Tenreiro R, Pereira P (2009) Detection of Planktothrix rubescens (Cyanobacteria) associated with microcystin production in a freshwater reservoir. Hydrobiologia 621:207–211CrossRefGoogle Scholar
  33. 33.
    Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204PubMedCrossRefGoogle Scholar
  34. 34.
    Pohnert G (2008) Influence of algal secondary metabolites on plankton community structure. In: Amsler CD (ed) Algal Chemical Ecology. Springer, Berlin, pp 195–202CrossRefGoogle Scholar
  35. 35.
    Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  36. 36.
    Poulson KL, Sieg RD, Kubanek J (2009) Chemical ecology of the marine plankton. Nat Prod Rep 26:729–745PubMedCrossRefGoogle Scholar
  37. 37.
    Prince EK, Myers TL, Naar J, Kubanek J (2008) Competing phytoplankton undermines allelopathy of a bloom-forming dinoflagellate. Proc R Soc B 275:2733–2741PubMedCrossRefGoogle Scholar
  38. 38.
    Sabart M, Pobel D, Briand E, Combourieu B, Salencon MJ, Humbert JF, Latour D (2010) Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76:4750–4759PubMedCrossRefGoogle Scholar
  39. 39.
    Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  40. 40.
    Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  41. 41.
    Suikkanen S, Fistarol GO, Granéli E (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 287:1–9CrossRefGoogle Scholar
  42. 42.
    van Gremberghe I, Vanormelingen P, Vanelslander B, Van der Gucht K, D’Hondt S, De Meester L, Vyverman W (2009) Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing. Oikos 118:1647–1658CrossRefGoogle Scholar
  43. 43.
    van Hannen EJ, van Agterveld MP, Gons HJ, Laanbroek HJ (1998) Revealing genetic diversity of eukaryotic microorganisms in aquatic environments by denaturing gradient gel electrophoresis. J Phycol 34:206–213CrossRefGoogle Scholar
  44. 44.
    Van Wichelen J, Van Gremberghe I, Vanormelingen P, Debeer AE, Leporcq B, Menzel D, Codd GA, Descy JP, Vyverman W (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ Microbiol 12:2797–2813PubMedGoogle Scholar
  45. 45.
    Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate–cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772PubMedCrossRefGoogle Scholar
  46. 46.
    Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133PubMedCrossRefGoogle Scholar
  47. 47.
    Zainuddin EN, Jansen R, Nimtz M, Wray V, Preisitsch M, Lalk M, Mundt S (2009) Lyngbyazothrins A-D, antimicrobial cyclic undecapeptides from the cultured cyanobacterium Lyngbya sp. J Nat Prod 72:1373–1378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pedro N. Leão
    • 1
  • Vitor Ramos
    • 1
  • Micaela Vale
    • 1
  • João P. Machado
    • 1
  • Vitor M. Vasconcelos
    • 1
    • 2
  1. 1.CIIMAR/CIMAR-LA, Center for Marine and Environmental ResearchUniversity of PortoPortoPortugal
  2. 2.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations