Microbial Ecology

, Volume 63, Issue 1, pp 74–84 | Cite as

Environmental Controls on Microbial Abundance and Activity on the Greenland Ice Sheet: A Multivariate Analysis Approach

  • Marek Stibal
  • Jon Telling
  • Joe Cook
  • Ka Man Mak
  • Andy Hodson
  • Alexandre M. Anesio
Environmental Microbiology

Abstract

Microbes in supraglacial ecosystems have been proposed to be significant contributors to regional and possibly global carbon cycling, and quantifying the biogeochemical cycling of carbon in glacial ecosystems is of great significance for global carbon flow estimations. Here we present data on microbial abundance and productivity, collected along a transect across the ablation zone of the Greenland ice sheet (GrIS) in summer 2010. We analyse the relationships between the physical, chemical and biological variables using multivariate statistical analysis. Concentrations of debris-bound nutrients increased with distance from the ice sheet margin, as did both cell numbers and activity rates before reaching a peak (photosynthesis) or a plateau (respiration, abundance) between 10 and 20 km from the margin. The results of productivity measurements suggest an overall net autotrophy on the GrIS and support the proposed role of ice sheet ecosystems in carbon cycling as regional sinks of CO2 and places of production of organic matter that can be a potential source of nutrients for downstream ecosystems. Principal component analysis based on chemical and biological data revealed three clusters of sites, corresponding to three ‘glacier ecological zones’, confirmed by a redundancy analysis (RDA) using physical data as predictors. RDA using data from the largest ‘bare ice zone’ showed that glacier surface slope, a proxy for melt water flow, accounted for most of the variation in the data. Variation in the chemical data was fully explainable by the determined physical variables. Abundance of phototrophic microbes and their proportion in the community were identified as significant controls of the carbon cycling-related microbial processes.

References

  1. 1.
    Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol 15:955–960CrossRefGoogle Scholar
  2. 2.
    Bøggild CE, Brandt RE, Brown KJ, Warren SG (2010) The ablation zone in northeast Greenland: ice types, albedos and impurities. J Glaciol 56:101–113CrossRefGoogle Scholar
  3. 3.
    Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49:50–62PubMedCrossRefGoogle Scholar
  4. 4.
    Cook J, Hodson A, Telling J, Anesio A, Irvine-Fynn T, Bellas C (2010) The mass–area relationship within cryoconite holes and its implications for primary production. Ann Glaciol 51(56):106–110CrossRefGoogle Scholar
  5. 5.
    Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard BP, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160PubMedCrossRefGoogle Scholar
  6. 6.
    Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res 112:G04S32CrossRefGoogle Scholar
  7. 7.
    Hanna E, Huybrechts P, Janssens I, Cappelen J, Steffen K, Stephens A (2005) Runoff and mass balance of the Greenland ice sheet: 1958–2003. J Geophys Res 110:D13108CrossRefGoogle Scholar
  8. 8.
    Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res 112:G04S36CrossRefGoogle Scholar
  9. 9.
    Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Banwart S (2010) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–361CrossRefGoogle Scholar
  10. 10.
    Hodson A, Bøggild C, Hanna E, Huybrechts P, Langford H, Cameron K, Houldsworth A (2010) The cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 51(56):123–129CrossRefGoogle Scholar
  11. 11.
    Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D, Scott D (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047PubMedCrossRefGoogle Scholar
  12. 12.
    Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407PubMedCrossRefGoogle Scholar
  13. 13.
    Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam, 853Google Scholar
  14. 14.
    Massieux B, Boivin MEY, van den Ende FP, Langenskiöld J, Marvan P, Barranguet C, Admiraal W, Laanbroek HJ, Zwart G (2004) Analysis of structural and physiological profiles to assess the effects of Cu on biofilm microbial communities. Appl Environ Microbiol 70:4512–4521PubMedCrossRefGoogle Scholar
  15. 15.
    Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74CrossRefGoogle Scholar
  16. 16.
    Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975PubMedCrossRefGoogle Scholar
  17. 17.
    Ramette A (2007) Multivariate analysis in microbial ecology. FEMS Microbiol Ecol 62:142–160PubMedCrossRefGoogle Scholar
  18. 18.
    Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci USA 104:2761–2766PubMedCrossRefGoogle Scholar
  19. 19.
    Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596Google Scholar
  20. 20.
    Säwström C, Laybourn-Parry J, Granéli W, Anesio AM (2007) Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol 30:1407–1415CrossRefGoogle Scholar
  21. 21.
    Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654PubMedCrossRefGoogle Scholar
  22. 22.
    Stibal M, Tranter M (2007) Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. J Geophys Res 112:G04S33CrossRefGoogle Scholar
  23. 23.
    Stibal M, Tranter M, Benning LG, Řehák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178PubMedCrossRefGoogle Scholar
  24. 24.
    Stibal M, Anesio AM, Blues CJD, Tranter M (2009) Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6:913–922CrossRefGoogle Scholar
  25. 25.
    Stibal M, Lawson EC, Lis GP, Mak KM, Wadham JL, Anesio AM (2010) Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann Glaciol 51(56):1–8CrossRefGoogle Scholar
  26. 26.
    Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska range). Hydrol Process 15:3447–3459CrossRefGoogle Scholar
  27. 27.
    Tedesco M, Fettweis X, van den Broeke MR, van de Wal RSW, Smeets CJPP, van de Berg WJ, Serreze MC, Box JE (2011) The role of albedo and accumulation in the 2010 melting record in Greenland. Environ Res Lett 6:014005CrossRefGoogle Scholar
  28. 28.
    Telling J, Anesio AM, Hawkings J, Tranter M, Wadham JL, Hodson AJ, Irvine-Fynn T, Yallop ML (2010) Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann Glaciol 51(56):135–144CrossRefGoogle Scholar
  29. 29.
    Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res. doi:10.1029/2010JG001632
  30. 30.
    ter Braak CJF (1987) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Centre for Agricultural Publishing and Documentation, Wageningen, pp 91–169Google Scholar
  31. 31.
    ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, p 550Google Scholar
  32. 32.
    Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S (2010) Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 4:71–80CrossRefGoogle Scholar
  33. 33.
    Wientjes IGM, van de Wal RSW, Reichart GJ, Sluijs A, Oerlemans J (2011) Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 5:589–601CrossRefGoogle Scholar
  34. 34.
    Yoshimura Y, Kohshima S, Ohtani S (1997) A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct Alp Res 29:126–137CrossRefGoogle Scholar
  35. 35.
    Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marek Stibal
    • 1
  • Jon Telling
    • 1
  • Joe Cook
    • 2
  • Ka Man Mak
    • 1
  • Andy Hodson
    • 2
  • Alexandre M. Anesio
    • 1
  1. 1.Bristol Glaciology Centre, School of Geographical SciencesUniversity of BristolBristolUK
  2. 2.Department of GeographyUniversity of SheffieldSheffieldUK

Personalised recommendations