Advertisement

Microbial Ecology

, Volume 63, Issue 2, pp 304–313 | Cite as

Changes of Fecal Bifidobacterium Species in Adult Patients with Hepatitis B Virus-Induced Chronic Liver Disease

  • Min Xu
  • Baohong Wang
  • Yiqi Fu
  • Yanfei Chen
  • Fengling Yang
  • Haifeng Lu
  • Yunbo Chen
  • Jiali Xu
  • Lanjuan LiEmail author
Host Microbe Interactions

Abstract

The beneficial effects of Bifidobacteria on health have been widely accepted. Patients with chronic liver disease have varying degrees of intestinal microflora imbalance with a decrease of total Bifidobacterial counts. Since different properties have been attributed to different Bifidobacterium species and there is no information available for the detailed changes in the genus Bifidobacterium in patients with chronic liver disease heretofore, it is meaningful to investigate the structure of this bacterium at the species level in these patients. The aim of this study was to characterize the composition of intestinal Bifidobacterium in patients with hepatitis B virus-induced chronic liver disease. Nested-PCR-based denaturing gradient gel electrophoresis (PCR-DGGE), clone library, and real-time quantitative PCR were performed on the fecal samples of 16 patients with chronic hepatitis B (CHB patients), 16 patients with hepatitis B virus-related cirrhosis (HBV cirrhotics), and 15 healthy subjects (Controls). Though there was no significant difference in the diversity among the three groups (P = 0.196), Bifidobacterium dentium seems to be specifically enhanced in patients as the PCR-DGGE profiles showed, which was further validated by clone library and real-time quantitative PCR. In contrast to the B. dentium, Bifidobacterium catenulatum/Bifidobacterium pseudocatenulatum were detected less frequently in the predominant profile and by quantitative PCR in HBV cirrhotics than in the controls, and the level of this species was also significantly different between these two groups (P = 0.023). Although having no quantitative difference among the three groups, Bifidobacterium longum was less commonly detected in HBV cirrhotics than in CHB patients and Controls by quantitative PCR (P = 0.011). Thus, the composition of intestinal Bifidobacterium was deeply altered in CHB and HBV cirrhotic patients with a shift from beneficial species to opportunistic pathogens. The results provide further insights into the dysbiosis of the intestinal microbiota in patients with hepatitis B virus-induced chronic liver disease and might potentially serve as guidance for the probiotics interventions of these diseases.

Keywords

Clone Library Minimal Hepatic Encephalopathy Bifidobacterium Longum Bifidobacterium Bifidum Bifidobacterium Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported by the National Basic Research Program (973) of China (2007CB513003 and 2009CB522406) and Zhejiang Public Health Bureau Fund (2008QN010). We thank Dr. Wei Chen for critical reading and useful suggestions.

References

  1. 1.
    Lavanchy D (2004) Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 11:97–107PubMedCrossRefGoogle Scholar
  2. 2.
    Garcia-Tsao G, Wiest R (2004) Gut microflora in the pathogenesis of the complications of cirrhosis. Best Pract Res Clin Gastroenterol 18:353–372PubMedCrossRefGoogle Scholar
  3. 3.
    Norman K, Pirlich M (2008) Gastrointestinal tract in liver disease: which organ is sick? Curr Opin Clin Nutr Metab Care 11:613–619PubMedCrossRefGoogle Scholar
  4. 4.
    Riordan SM, Williams R (2006) The intestinal flora and bacterial infection in cirrhosis. J Hepatol 45:744–757PubMedCrossRefGoogle Scholar
  5. 5.
    Trebichavsky I, Rada V, Splichalova A, Splichal I (2009) Cross-talk of human gut with bifidobacteria. Nutr Rev 67:77–82PubMedCrossRefGoogle Scholar
  6. 6.
    Mitsuoka T (1990) Bifidobacteria and their role in human health. J Ind Microbiol 6:263–267CrossRefGoogle Scholar
  7. 7.
    Fyderek K, Strus M, Kowalska-Duplaga K, Gosiewski T, Wedrychowicz A, Jedynak-Wasowicz U, Sladek M, Pieczarkowski S, Adamski P, Kochan P, Heczko PB (2009) Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol 15:5287–5294PubMedCrossRefGoogle Scholar
  8. 8.
    Kerckhoffs AP, Samsom M, van der Rest ME, de Vogel J, Knol J, Ben-Amor K, Akkermans LM (2009) Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol 15:2887–2892PubMedCrossRefGoogle Scholar
  9. 9.
    Li L, Wu Z, Ma W, Yu Y, Chen Y (2001) Changes in intestinal microflora in patients with chronic severe hepatitis. Chin Med J (Engl) 114:869–872Google Scholar
  10. 10.
    Zhao HY, Wang HJ, Lu Z, Xu SZ (2004) Intestinal microflora in patients with liver cirrhosis. Chin J Dig Dis 5:64–67PubMedCrossRefGoogle Scholar
  11. 11.
    Lu H, Wu Z, Xu W, Yang J, Chen Y, Li L (2011) Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection: intestinal microbiota of HBV cirrhotic patients. Microb Ecol 61(3):693–703PubMedCrossRefGoogle Scholar
  12. 12.
    Lopez P, Gueimonde M, Margolles A, Suarez A (2010) Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol 138:157–165PubMedCrossRefGoogle Scholar
  13. 13.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y, Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65PubMedCrossRefGoogle Scholar
  14. 14.
    Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCrossRefGoogle Scholar
  15. 15.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCrossRefGoogle Scholar
  16. 16.
    Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A, van Sinderen D, Ventura M (2009) Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J 3:745–751PubMedCrossRefGoogle Scholar
  17. 17.
    Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol 8:232PubMedCrossRefGoogle Scholar
  18. 18.
    Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550PubMedCrossRefGoogle Scholar
  19. 19.
    Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, Rodriguez JM (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhbacher T, Ott SJ, Helwig U, Mimura T, Rizzello F, Kleessen B, Gionchetti P, Blaut M, Campieri M, Folsch UR, Kamm MA, Schreiber S (2006) Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55:833–841PubMedCrossRefGoogle Scholar
  21. 21.
    Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173PubMedCrossRefGoogle Scholar
  22. 22.
    Zhuang H (2007) Guideline on prevention and treatment of chronic hepatitis B in China (2005). Chinese Med J-Peking 120:2159–2173Google Scholar
  23. 23.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646–649PubMedCrossRefGoogle Scholar
  24. 24.
    Nielsen DS, Moller PL, Rosenfeldt V, Paerregaard A, Michaelsen KF, Jakobsen M (2003) Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol 69:7545–7548PubMedCrossRefGoogle Scholar
  25. 25.
    Satokari RM, Vaughan EE, Akkermans AD, Saarela M, de Vos WM (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513PubMedCrossRefGoogle Scholar
  26. 26.
    Simpson JM, McCracken VJ, Gaskins HR, Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol 66:4705–4714PubMedCrossRefGoogle Scholar
  27. 27.
    Ritchie LE, Steiner JM, Suchodolski JS (2008) Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 66:590–598PubMedCrossRefGoogle Scholar
  28. 28.
    Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  29. 29.
    Pei CX, Liu Q, Dong CS, Li H, Jiang JB, Gao WJ (2010) Diversity and abundance of the bacterial 16S rRNA gene sequences in forestomach of alpacas (Lama pacos) and sheep (Ovis aries). Anaerobe 16:426–432PubMedCrossRefGoogle Scholar
  30. 30.
    Sanz Y, Sanchez E, Marzotto M, Calabuig M, Torriani S, Dellaglio F (2007) Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 51:562–568PubMedCrossRefGoogle Scholar
  31. 31.
    Sheth AA, Garcia-Tsao G (2008) Probiotics and liver disease. J Clin Gastroenterol 42(Suppl 2):S80–S84PubMedCrossRefGoogle Scholar
  32. 32.
    Malaguarnera M, Greco F, Barone G, Gargante MP, Toscano MA (2007) Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig Dis Sci 52:3259–3265PubMedCrossRefGoogle Scholar
  33. 33.
    Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506–4512PubMedGoogle Scholar
  34. 34.
    Beighton D, Gilbert SC, Clark D, Mantzourani M, Al-Haboubi M, Ali F, Ransome E, Hodson N, Fenlon M, Zoitopoulos L, Gallagher J (2008) Isolation and identification of bifidobacteriaceae from human saliva. Appl Environ Microbiol 74:6457–6460PubMedCrossRefGoogle Scholar
  35. 35.
    Hojo K, Nagaoka S, Murata S, Taketomo N, Ohshima T, Maeda N (2007) Reduction of vitamin K concentration by salivary Bifidobacterium strains and their possible nutritional competition with Porphyromonas gingivalis. J Appl Microbiol 103:1969–1974PubMedCrossRefGoogle Scholar
  36. 36.
    Mantzourani M, Gilbert SC, Sulong HN, Sheehy EC, Tank S, Fenlon M, Beighton D (2009) The isolation of bifidobacteria from occlusal carious lesions in children and adults. Caries Res 43:308–313PubMedCrossRefGoogle Scholar
  37. 37.
    Nakajo K, Takahashi N, Beighton D (2010) Resistance to acidic environments of caries-associated bacteria: Bifidobacterium dentium and Bifidobacterium longum. Caries Res 44:431–437PubMedCrossRefGoogle Scholar
  38. 38.
    Gueimonde M, Debor L, Tolkko S, Jokisalo E, Salminen S (2007) Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. J Appl Microbiol 102:1116–1122PubMedGoogle Scholar
  39. 39.
    Ventura M, Turroni F, Zomer A, Foroni E, Giubellini V, Bottacini F, Canchaya C, Claesson MJ, He F, Mantzourani M, Mulas L, Ferrarini A, Gao B, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Gupta RS, Zhang Z, Beighton D, Fitzgerald GF, O’Toole PW, van Sinderen D (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 5:e1000785PubMedCrossRefGoogle Scholar
  40. 40.
    Fardini Y, Chung P, Dumm R, Joshi N, Han YW (2010) Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78:1789–1796PubMedCrossRefGoogle Scholar
  41. 41.
    Li YT, Wang L, Chen Y, Chen YB, Wang HY, Wu ZW, Li LJ (2010) Effects of gut microflora on hepatic damage after acute liver injury in rats. J Trauma 68:76–83PubMedCrossRefGoogle Scholar
  42. 42.
    Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, Chen Y, Fu SZ, Chen CL, Wang JG, Yan D, Dai FW, Zheng SS (2006) Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia-reperfusion injury. J Gastroenterol Hepatol 21:647–656PubMedCrossRefGoogle Scholar
  43. 43.
    Romond MB, Haddou Z, Mielcareck C, Romond C (1997) Bifidobacteria and human health: regulatory effect of indigenous bifidobacteria on Escherichia coli intestinal colonization. Anaerobe 3:131–136PubMedCrossRefGoogle Scholar
  44. 44.
    Matsumoto T, Ishikawa H, Tateda K, Yaeshima T, Ishibashi N, Yamaguchi K (2008) Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J Appl Microbiol 104:672–680PubMedCrossRefGoogle Scholar
  45. 45.
    Han SY, Huh CS, Ahn YT, Lim KS, Baek YJ, Kim DH (2005) Hepatoprotective effect of lactic acid bacteria, inhibitors of beta-glucuronidase production against intestinal microflora. Arch Pharm Res 28:325–329PubMedCrossRefGoogle Scholar
  46. 46.
    Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341PubMedCrossRefGoogle Scholar
  47. 47.
    Kulagina EV, Shkoporov AN, Kafarskaia LI, Khokhlova EV, Volodin NN, Donskikh EE, Korshunova OV, Efimov BA (2010) Molecular genetic study of species and strain variability in bifidobacteria population in intestinal microflora of breast-fed infants and their mothers. Bull Exp Biol Med 150:61–64PubMedCrossRefGoogle Scholar
  48. 48.
    Delgado S, Suarez A, Mayo B (2006) Bifidobacterial diversity determined by culturing and by 16S rDNA sequence analysis in feces and mucosa from ten healthy Spanish adults. Dig Dis Sci 51:1878–1885PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Min Xu
    • 1
  • Baohong Wang
    • 1
  • Yiqi Fu
    • 2
  • Yanfei Chen
    • 1
  • Fengling Yang
    • 1
  • Haifeng Lu
    • 1
  • Yunbo Chen
    • 1
  • Jiali Xu
    • 1
  • Lanjuan Li
    • 1
    Email author
  1. 1.State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Respiratory Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations