Microbial Ecology

, Volume 63, Issue 2, pp 282–294 | Cite as

Genomic Analysis Reveals Multiple [FeFe] Hydrogenases and Hydrogen Sensors Encoded by Treponemes from the H2-Rich Termite Gut

  • Nicholas R. Ballor
  • Ian Paulsen
  • Jared R. Leadbetter
Genes and Genomes

Abstract

We have completed a bioinformatic analysis of the hydrogenases encoded in the genomes of three termite gut treponeme isolates: hydrogenotrophic, homoacetogenic Treponema primitia strains ZAS-1 and ZAS-2, and the hydrogen-producing, sugar-fermenting Treponema azotonutricium ZAS-9. H2 is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The spirochetes encoded 4, 8, and 5 [FeFe] hydrogenase-like proteins, identified by their H domains, respectively, but no other recognizable hydrogenases. The [FeFe] hydrogenases represented many sequence families previously proposed in an analysis of termite gut metagenomic data. Each strain encoded both putative [FeFe] hydrogenase enzymes and evolutionarily related hydrogen sensor/transducer proteins likely involved in phosphorelay or methylation pathways, and possibly even chemotaxis. A new family of [FeFe] hydrogenases (FDH-Linked) is proposed that may form a multimeric complex with formate dehydrogenase to provide reducing equivalents for reductive acetogenesis in T. primitia. The many and diverse [FeFe] hydrogenase-like proteins encoded within the sequenced genomes of the termite gut treponemes has enabled the discovery of a putative new class of [FeFe] hydrogenase proteins potentially involved in acetogenesis and furthered present understanding of many families, including sensory, of H domain proteins beyond what was possible through the use of fragmentary termite gut metagenome sequence data alone, from which they were initially defined.

Supplementary material

248_2011_9922_MOESM1_ESM.pdf (289 kb)
Table S1Primer sequences used in this study (PDF 288 KB)

References

  1. 1.
    Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487CrossRefGoogle Scholar
  2. 2.
    Sugimoto A, Bignell DE, MacDonald JA (2000) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Boston, pp 409–435Google Scholar
  3. 3.
    Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387PubMedCrossRefGoogle Scholar
  4. 4.
    Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic–anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046PubMedPubMedCentralGoogle Scholar
  6. 6.
    Odelson DA, Breznak JA (1985) Cellulase and other polymer-hydrolyzing activities of Trichomitopsis termopsidis, a symbiotic protozoan from termites. Appl Environ Microbiol 49:622–626PubMedPubMedCentralGoogle Scholar
  7. 7.
    Odelson DA, Breznak JA (1985) Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621PubMedPubMedCentralGoogle Scholar
  8. 8.
    Müller N, Worm P, Schink B, Alfons JMS, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499PubMedCrossRefGoogle Scholar
  9. 9.
    Worm P, Fermoso FG, Stams AJM, Lens PNL, Plugge CM (2011) Transcription of fdh and hyd in Syntrophobacter sppp. and Methanospirillum spp. in anaerobic granular sludge deprived of molybdenum, tungsten and selenium. Environ Microbiol 13:1228–1235PubMedCrossRefGoogle Scholar
  10. 10.
    Worm P, Stams AJM, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase encoding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157:280–289PubMedCrossRefGoogle Scholar
  11. 11.
    Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577PubMedCrossRefGoogle Scholar
  12. 12.
    Yamin MA, Trager W (1979) Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. J Gen Microbiol 113:417–420CrossRefGoogle Scholar
  13. 13.
    Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59PubMedCrossRefGoogle Scholar
  14. 14.
    Inoue J-I, Saita K, Kudo T, Ui S, Ohkuma M (2007) Hydrogen production by termite gut protists: characterization of iron hydrogenases of Parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613PubMedPubMedCentralGoogle Scholar
  16. 16.
    Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689PubMedCrossRefGoogle Scholar
  17. 17.
    Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631PubMedPubMedCentralGoogle Scholar
  18. 18.
    Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J 1:551–565PubMedCrossRefGoogle Scholar
  19. 19.
    Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327PubMedCrossRefGoogle Scholar
  20. 20.
    Schink B, Lupton FS, Zeikus JG (1983) Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments. Appl Environ Microbiol 45:1491–1500PubMedPubMedCentralGoogle Scholar
  21. 21.
    Sugimoto A, Fujita N (2006) Hydrogen concentrations and stable isotopic composition of methane in bubble gas observed in a natural wetland. Biogeochemistry 81:33–44CrossRefGoogle Scholar
  22. 22.
    Scranton MI, Novelli PC, Loud PA (1984) The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments. Limnol Oceanogr 29:993–1003CrossRefGoogle Scholar
  23. 23.
    Smolenski WJ, Robinson JA (1988) In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol Lett 53:95–100CrossRefGoogle Scholar
  24. 24.
    Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269PubMedCrossRefGoogle Scholar
  25. 25.
    Brune A (1998) Termite guts: the world's smallest bioreactors. Trends Biotechnol 16:16–21CrossRefGoogle Scholar
  26. 26.
    Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292PubMedCrossRefGoogle Scholar
  27. 27.
    Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565PubMedCrossRefGoogle Scholar
  28. 28.
    Frey M (2002) Hydrogenases: hydrogen-activating enzymes. ChemBioChem 3:153–160PubMedCrossRefGoogle Scholar
  29. 29.
    Vignais PM, Billoud B (2007) Occurence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272PubMedCrossRefGoogle Scholar
  30. 30.
    Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501PubMedGoogle Scholar
  31. 31.
    Cleveland LR (1923) Correlation between the food and morphology of termites and the presence of intestinal protozoa. Am J Epidemiol 3:444–461Google Scholar
  32. 32.
    Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci USA 9:424–428PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Boston, pp 209–231Google Scholar
  34. 34.
    Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 1. Springer Science+Business Media, LLC, New York, pp 439–474CrossRefGoogle Scholar
  35. 35.
    Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343PubMedCrossRefGoogle Scholar
  36. 36.
    Hungate RE (1939) Experiments on the nutrition of Zootermopsis III: the anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20:230–245CrossRefGoogle Scholar
  37. 37.
    Hungate RE (1943) Quantitative analysis on the cellulose fermentation by termite protozoa. Ann Entomol Soc Am 36:730–739Google Scholar
  38. 38.
    Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345PubMedCrossRefGoogle Scholar
  39. 39.
    Paster BJ, Dewhirst FE (2000) Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol 2:341–344PubMedGoogle Scholar
  40. 40.
    Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62:347–352PubMedPubMedCentralGoogle Scholar
  41. 41.
    Salmassi TM, Leadbetter JR (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149:2529–2537PubMedCrossRefGoogle Scholar
  42. 42.
    Pester M, Brune A (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ Microbiol 8:1261–1270PubMedCrossRefGoogle Scholar
  43. 43.
    Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498PubMedCrossRefGoogle Scholar
  44. 44.
    Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75–90PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  48. 48.
    Pietrokovski S, Henikoff JG, Henikoff S (1998) Exploring protein homology with the Blocks server. Trends Genet 14:162–163PubMedCrossRefGoogle Scholar
  49. 49.
    Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54PubMedCrossRefGoogle Scholar
  50. 50.
    Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084PubMedCrossRefGoogle Scholar
  51. 51.
    Leach MR, Zamble DB (2007) Metallocenter assembly of the hydrogenase enzymes. Curr Opin Chem Biol 11:159–165PubMedCrossRefGoogle Scholar
  52. 52.
    Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71PubMedCrossRefGoogle Scholar
  53. 53.
    Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720PubMedCrossRefGoogle Scholar
  54. 54.
    Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen I-M, Grechkin Y, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36:D534–D538PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen I-M, Dubchak I, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36:D528–D533PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218PubMedCrossRefGoogle Scholar
  58. 58.
    Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25:3005–3011PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mulder N, Apweiler R (2007) InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396:59–70PubMedCrossRefGoogle Scholar
  60. 60.
    Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS (2005) PSORTb v20: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623PubMedCrossRefGoogle Scholar
  61. 61.
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Verhagen MF, O'Rourke T, Adams MW (1999) The hypothermophylic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412:212–229PubMedCrossRefGoogle Scholar
  63. 63.
    Matson EG, Zhang X, Leadbetter JR (2010) Selenium controls transcription of paralogous formate dehydrogenase genes in the termite gut acetogen, Treponema primitia. Environ Microbiol 12:2245–2258PubMedGoogle Scholar
  64. 64.
    Vu AT, Nguyen NC, Leadbetter JR (2004) Iron reduction in the metal-rich guts of wood-feeding termites. Geobiology 2:239–247CrossRefGoogle Scholar
  65. 65.
    Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  66. 66.
    Weidner U, Geier S, Ptock A, Friedrich T, Leif H, Weiss H (1993) The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233:109–122PubMedCrossRefGoogle Scholar
  67. 67.
    Malki S, Saimmaime I, de Luca G, Rousset M, Dermoun Z, Belaich J-P (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–2636PubMedPubMedCentralGoogle Scholar
  68. 68.
    Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463PubMedCrossRefGoogle Scholar
  69. 69.
    Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 51:1335–1341PubMedGoogle Scholar
  70. 70.
    Hatchikian CE, Chaigneau M, Le Gall J (1976) Analysis of gas production by growing culture of three species of sulfate-reducing bacteria. In: Schlegel HG, Gottschalk G, Pfenning N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 109–118Google Scholar
  71. 71.
    Traoré AS, Hatchikian EC, Belaich JP, Le Gall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–199PubMedPubMedCentralGoogle Scholar
  72. 72.
    Schwartz E, Friedrich B (2006) The H2-metabolizing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes, vol 2. Springer Science+Business Media, LLC, pp 496–563CrossRefGoogle Scholar
  73. 73.
    Ragsdale SW (2008) Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Graentzdoerffer A, Rauh D, Pich A, Andreesen JR (2003) Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 179:116–130PubMedGoogle Scholar
  75. 75.
    Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647PubMedCrossRefGoogle Scholar
  76. 76.
    Rosenthal AZ, Matson EG, Eldar A, Leadbetter JR (2011) RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J (in press)Google Scholar
  77. 77.
    Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532PubMedCrossRefGoogle Scholar
  78. 78.
    Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) Life in hot carbon monoxide: the complete genome of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:e65PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Shaw AJ, Hogsett DA, Lynd LR (2009) Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191:6457–6464PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Posewitz MC, Mulder DW, Peters JW (2008) New frontiers in hydrogenase structure and biosynthesis. Curr Chem Bio 2:178–199Google Scholar
  81. 81.
    Buhrke T, Lenz O, Porthun A, Friedrich B (2004) The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Mol Microbiol 51:1677–1689PubMedCrossRefGoogle Scholar
  82. 82.
    Rogov VV, Rogova NY, Bernhard F, Koglin A, Löhr F, Dötsch V (2006) A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. J Mol Biol 364:68–79PubMedCrossRefGoogle Scholar
  83. 83.
    Majdalani N, Gottesman S (2006) The Rcs Phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405CrossRefGoogle Scholar
  84. 84.
    Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicholas R. Ballor
    • 1
  • Ian Paulsen
    • 3
  • Jared R. Leadbetter
    • 1
    • 2
  1. 1.Biochemistry & Molecular BiophysicsMailcode 138-78, California Institute of TechnologyPasadenaUSA
  2. 2.The Ronald & Maxine Linde Center for Global Environmental ScienceMailcode 138-78, California Institute of TechnologyPasadenaUSA
  3. 3.Department of Chemistry & Biomolecular SciencesMacquarie University SydneySydneyAustralia

Personalised recommendations