Microbial Ecology

, Volume 62, Issue 4, pp 907–918 | Cite as

Phylogenetic Inference of Colony Isolates Comprising Seasonal Microcystis Blooms in Lake Taihu, China

  • Timothy G. Otten
  • Hans W. Paerl
Microbiology of Aquatic Systems


Blooms of the toxin-producing cyanobacterium, Microcystis spp., are an increasingly prevalent water quality problem and health hazard worldwide. China’s third largest lake, Lake Taihu, has been experiencing progressively more severe Microcystis blooms over the past three decades. In 2009 and 2010, individual Microcystis colonies, consisting of four different morphospecies, were isolated and genotyped using a whole-cell multiplex PCR assay. The 16S–23S rDNA-ITS sequences were aligned based on Bayesian inference and indicated that one morphospecies was genetically unique (Microcystis wesenbergii) and three were indistinguishable (Microcystis aeruginosa, Microcystis flos-aquae, and Microcystis ichthyoblabe). Microcystin (mcyB) genes were detected intermittently in two of the morphospecies while the other two morphospecies lacked the mcyB gene in all samples. Water temperature was found to influence bloom formation and morphotype prevalence, and chlorophyll a and temperature were positively and significantly correlated with microcystin concentration. Cooler water temperatures promoted toxigenic strains of Microcystis. Wind appeared to influence the distribution of morphotypes across the lake, with M. aeruginosa and M. ichthyoblabe being more susceptible to wind stress than M. wesenbergii and M. flos-aquae. The results of this study indicated that the blooms were composed of a variety of Microcystis morphospecies, with more genotypes observed than can be attributed to individual morphotypes. We conclude that morphology is not a reliable indicator of toxigenicity in Lake Taihu, and caution should be exercised when the M. aeruginosa morphotype is present because it is capable of producing MC-LR, the most toxic microcystin isoform.


cpcA Lake Center Microcystin Concentration Microcystis Bloom Adenylation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Drs. B. Qin, X. Hai, and G. Zhu (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (NIGLAS)) for their hospitality and assistance and the staff at the Taihu Lake Laboratory Ecosystem Research Station (TLLER) for their assistance with sample collection and K. Rossignol for HPLC analyses. This research was supported by National Science Foundation grants to Drs. Hans Paerl and Steven Wilhelm ENG/CBET-0826819, OCE-0825466 and by NSF East Asia and Pacific Summer Institute fellowship OISE-0913942.

Supplementary material

248_2011_9884_MOESM1_ESM.jpg (230 kb)
Supplemental Figure 1

Multiple pairwise alignments of consensus mcyB amino acid translations from Lake Taihu M. aeruginosa and M. flos-aquae morphospecies. Asterisk indicates adenylation domain binding pocket residues (JPEG 230 kb)

248_2011_9884_MOESM2_ESM.jpg (187 kb)
Supplemental Figure 2

Genetic variability of Microcystis species based on c-phycocyanin A (cpcA) gene amino acid pairwise alignments. Consensus (contig) Microcystis sequences were created from all available sequences in GenBank (n = 153) using a minimum overlap of 20 base pairs and at least 99% sequence identity (JPEG 186 kb)


  1. 1.
    Bittencourt-Oliveira M, Cabral de Oliveira M, Bolch CJ (2001) Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (cyanobacteria/cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818CrossRefGoogle Scholar
  2. 2.
    Bittencourt-Oliveira M, Piccin-Santos V et al (2010) Microcystin-producing genotypes from cyanobacteria in Brazilian reservoirs. Environ Toxicol 26. doi: 10.1002/tox.20659
  3. 3.
    Bozarth CS, Schwartz AD, Shepardson JW, Colwell FS, Dreher TW (2010) Population turnover in a Microcystis bloom results in predominately nontoxigenic variants later in the season. Appl Environ Microbiol 76:5207–5213CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carmichael WW (1995) Toxic Microcystis in the environment. In: Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC, New York, pp 1–12Google Scholar
  5. 5.
    Chen W, Chen Y, Gao X, Yoshida I (1997) Eutrophication of Taihu and its control. Agri Engin J 6:109–120Google Scholar
  6. 6.
    Chen Y, Qin B, Teubner K, Dokulil M (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453CrossRefGoogle Scholar
  7. 7.
    Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, LondonCrossRefGoogle Scholar
  8. 8.
    Dyble J, Fahnenstiel GL, Litaker RW, Millie DF, Tester PA (2008) Microcystin concentrations and genetic diversity of Microcystis in the Lower Great Lakes. Environ Toxicol 23:507–516CrossRefPubMedGoogle Scholar
  9. 9.
    Falconer IR, Humpage AR (1996) Tumour promotion by cyanobacteria. Phycologia 35:74–79CrossRefGoogle Scholar
  10. 10.
    Falconer IR (2005) Cyanobacterial toxins in drinking water supplies: cylindrospermopsins and microcystins. CRC, Boca RatonGoogle Scholar
  11. 11.
    Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Laakso K, Wang H, Sivonen K (2007) Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol 7:183CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Forni C, Telo FR, Caiola MG (1997) Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36:181–185CrossRefGoogle Scholar
  13. 13.
    Fujiki H, Suganuma M (1999) Unique features of the okadaic acid activity class of tumor promoters. J Cancer Res Clin Oncol 125:150–155CrossRefPubMedGoogle Scholar
  14. 14.
    Fulton RS, Paerl HW (1987) Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol Oceanogr 32:634–644CrossRefGoogle Scholar
  15. 15.
    Gehringer MM, Milne P, Lucietto F, Downing TG (2005) Comparison of the structure of key variants of microcystin to vasopressin. Environ Toxicol Pharmacol 19:297–303CrossRefPubMedGoogle Scholar
  16. 16.
    Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood. In: Keramidas EM (ed) Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, Fairfax Station, Interface Foundation, pp 156–163Google Scholar
  17. 17.
    Guo L (2007) Doing battle with the green monster of Taihu lake. Science 317:1166CrossRefPubMedGoogle Scholar
  18. 18.
    Hai X, Paerl HW, Qin B, Zhu G, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55:420–432CrossRefGoogle Scholar
  19. 19.
    Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410CrossRefPubMedGoogle Scholar
  20. 20.
    Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Group 11. Oxygenic phototrophic bacteria. In: Hensyl WR (ed) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, pp 377–425Google Scholar
  21. 21.
    Honma T, Park HD (2005) Influences of nitrate and phosphate concentrations on Microcystis species composition and microcystin concentration in Lake Suwa. J Jpn Soc Water Environ 28:373–378CrossRefGoogle Scholar
  22. 22.
    Hotto AM, Satchwell MF, Berry DL, Gobler CJ, Boyer GL (2008) Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae 7:671–681CrossRefGoogle Scholar
  23. 23.
    Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  24. 24.
    Imai H, Chang KH et al (2009) Growth responses of harmful algal species Microcystis (cyanophyceae) under various environmental conditions. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S (eds) Interdisciplinary Studies on Environmental Chemistry—Environmental Research in Asia, pp 269–275Google Scholar
  25. 25.
    Imai H, Chang KH, Kusaba M, Nakano S (2009) Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J Plankton Res 31:171–178CrossRefGoogle Scholar
  26. 26.
    Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286CrossRefPubMedGoogle Scholar
  27. 27.
    Janse I, Kardinaal W, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70:3979–3987CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371CrossRefPubMedGoogle Scholar
  29. 29.
    Komárek J, Komárková J (2002) Review of the European Microcystis—morphospecies (Cyanoprokaryotes) from nature. Czech Phycol 2:1–24Google Scholar
  30. 30.
    Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509CrossRefPubMedGoogle Scholar
  31. 31.
    Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390CrossRefGoogle Scholar
  32. 32.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 21:2947–2948CrossRefGoogle Scholar
  33. 33.
    Lehman PW, Boyer G, Satchwell M, Waller S (2008) The influence of environmental conditions on the variation of Microcystis cell density and microcystins concentration in San Francisco Estuary. Hydrobiologia 600:187–204CrossRefGoogle Scholar
  34. 34.
    Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86CrossRefPubMedGoogle Scholar
  35. 35.
    Mantoura RFC, Wright SW (1997) Guidelines to modern methods (monographs on oceanographic methodology). In: Jeffrey SW (ed) Phytoplankton pigments in oceanography. UNESCO Publishing, ParisGoogle Scholar
  36. 36.
    McDermott CM, Nho CW, Howard W, Holton B (1998) The cyanobacterial toxin, microcystin-LR can induce apoptosis in a variety of cell types. Toxicon 36:1981–1996CrossRefPubMedGoogle Scholar
  37. 37.
    Neilan BA, Jacobs D, Therese DD, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697CrossRefPubMedGoogle Scholar
  38. 38.
    Oberholster PJ, Botha AM, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr J Biotechnol 3:159–168CrossRefGoogle Scholar
  39. 39.
    O’brien KR, Meyer DL, Wait AM, IVEY GN, Hamilton DP (2004) Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: laboratory experiments in a grid-stirred tank. Hydrobiologia 519:143–152CrossRefGoogle Scholar
  40. 40.
    Otsuka S, Suda S, Li RH, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1998) 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 164:119–124CrossRefGoogle Scholar
  41. 41.
    Otsuka S, Suda S, Li RH, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21CrossRefPubMedGoogle Scholar
  42. 42.
    Otsuka S, Suda S, Li RH, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46:39–50CrossRefPubMedGoogle Scholar
  43. 43.
    Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the bacteriological code. Int J Syst Evol Micr 51:873–879CrossRefGoogle Scholar
  44. 44.
    Ouellette AJ, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366CrossRefGoogle Scholar
  45. 45.
    Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113CrossRefGoogle Scholar
  46. 46.
    Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58CrossRefPubMedGoogle Scholar
  47. 47.
    Paerl HW, Xu H et al (2010) Controlling harmful cyanobacterial blooms in a hypereutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983CrossRefPubMedGoogle Scholar
  48. 48.
    Pearson LA, Hisbergues M, Börner T, Dittman E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–6378CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pinckney J, Richardson T, Millie D, Paerl HW (2001) Application of photopigment biomarkers for quantifying algal community composition and in situ growth rates. Org Geochem 32:585–595CrossRefGoogle Scholar
  50. 50.
    Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manage 45:105–112CrossRefPubMedGoogle Scholar
  51. 51.
    Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6:159–176CrossRefGoogle Scholar
  52. 52.
    Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  53. 53.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  54. 54.
    Sedmak B, Elersek T (2005) Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 51:508–515CrossRefGoogle Scholar
  55. 55.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  56. 56.
    Tan X, Kong F, Zeng Q, Cao H, Qian S, Zhang M (2009) Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. J Environ Sci 21:892–899CrossRefGoogle Scholar
  57. 57.
    Thomas RH, Walsby AE (1986) The effect of temperature on recovery of buoyancy by Microcystis. J Gen Microbiol 132:1665–1672Google Scholar
  58. 58.
    Tillett D, Dittmann E, Erhard M, Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764CrossRefPubMedGoogle Scholar
  59. 59.
    Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K, Kristensen T, Jakobsen KS (2008) Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evol Biol 8:256CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K (2003) Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microbiol 69:7289–7297CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602CrossRefPubMedGoogle Scholar
  62. 62.
    Visser P, Ibelings B, Mur L, Walsby A (2005) The ecophysiology of the harmful cyanobacterium Microcystis: features explaining its success and measures for its control. In: Huisman J, Matthijs H, Visser PM (eds) Aquatic ecology series—harmful cyanobacteria. Springer, Netherlands, pp 109–142Google Scholar
  63. 63.
    Wallace BB, Bailey M, Hamilton DP (2000) Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J Plankton Res 22:1127–1138CrossRefGoogle Scholar
  64. 64.
    Wang XJ, Liu RM (2005) Spatial analysis and eutrophication assessment of chlorophyll a in Taihu Lake. Environ Monit Assess 101:167–174PubMedGoogle Scholar
  65. 65.
    Wang X, Qin B, Gao G, Wang Y, Tang X, Otten TG (2010) Phytoplankton community from Lake Taihu, China, has dissimilar responses to inorganic and organic nutrients. J Environ Sci 22:1491–1499CrossRefGoogle Scholar
  66. 66.
    Watanabe M (1996) Isolation, cultivation, and classification of bloom-forming Microcystis in Japan. In: Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC, Boca Raton, pp 13–34Google Scholar
  67. 67.
    Westhuizen AJ, Eloff JN (1985) Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta 163:55–59CrossRefPubMedGoogle Scholar
  68. 68.
    Wu X, Kong F (2009) Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Internat Rev Hydrobiol 94:258–266CrossRefGoogle Scholar
  69. 69.
    Yang SQ, Liu PW (2010) Strategy of water pollution prevention in Taihu Lake and its effects analysis. J Great Lakes Res 36:150–158CrossRefGoogle Scholar
  70. 70.
    Zhang YL, Qin B, Liu ML (2007) Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003. J Plankton Res 29:707–719CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Environmental Sciences and Engineering, Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityUSA

Personalised recommendations