Microbial Ecology

, Volume 62, Issue 3, pp 655–668 | Cite as

Diversity and Spatial Distribution of Prokaryotic Communities Along A Sediment Vertical Profile of A Deep-Sea Mud Volcano

  • Maria G. Pachiadaki
  • Argyri Kallionaki
  • Anke Dählmann
  • Gert J. De Lange
  • Konstantinos Ar. KormasEmail author
Microbiology of Aquatic Systems


We investigated the top 30-cm sediment prokaryotic community structure in 5-cm spatial resolution, at an active site of the Amsterdam mud volcano, East Mediterranean Sea, based on the 16S rRNA gene diversity. A total of 339 and 526 sequences were retrieved, corresponding to 25 and 213 unique (≥98% similarity) phylotypes of Archaea and Bacteria, respectively, in all depths. The Shannon–Wiener diversity index H was higher for Bacteria (1.92–4.03) than for Archaea (0.99–1.91) and varied differently between the two groups. Archaea were dominated by anaerobic methanotrophs ANME-1, -2 and -3 groups and were related to phylotypes involved in anaerobic oxidation of methane from similar habitats. The much more complex Bacteria community consisted of 20 phylogenetic groups at the phylum/candidate division level. Proteobacteria, in particular δ-Proteobacteria, was the dominant group. In most sediment layers, the dominant phylotypes of both the Archaea and Bacteria communities were found in neighbouring layers, suggesting some overlap in species richness. The similarity of certain prokaryotic communities was also depicted by using four different similarity indices. The direct comparison of the retrieved phylotypes with those from the Kazan mud volcano of the same field revealed that 40.0% of the Archaea and 16.9% of the Bacteria phylotypes are common between the two systems. The majority of these phylotypes are closely related to phylotypes originating from other mud volcanoes, implying a degree of endemicity in these systems.


Archaea Clone Library Chloroflexi Prokaryotic Community Common Phylotypes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research project is co-financed by EU-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). This work was partly supported by the European Commission projects ANAXIMANDER (contract no. EVK3-CT-2002-00068) and HERMIONE (contract no 226354). Captain, crew and participants of the R/V AEGAEO are gratefully acknowledged for their contribution to the field work, sampling and analyses. The authors thank the three anonymous reviewers for their valuable comments.

Supplementary material

248_2011_9855_MOESM1_ESM.doc (6.9 mb)
ESM 1 (DOC 6.88 mb)


  1. 1.
    Aller JY, Aller RC, Kemp PF, Chistoserdov AY, Madrid VM (2010) Fluidized muds: a novel setting for the generation of biosphere diversity through geologic time. Geobiology 8:169–178PubMedCrossRefGoogle Scholar
  2. 2.
    Aloisi G, Pierre C, Rouchy JM, Foucher JP, Woodside J (2000) Methane-related authigenic carbonates of Eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184:321–338CrossRefGoogle Scholar
  3. 3.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. 4.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736PubMedCrossRefGoogle Scholar
  5. 5.
    Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187PubMedCrossRefGoogle Scholar
  6. 6.
    Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116PubMedCrossRefGoogle Scholar
  7. 7.
    Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation methane. Nature 407:623–626PubMedCrossRefGoogle Scholar
  8. 8.
    Bouloubassi I, Aloisi G, Pancost RD et al (2006) Archaeal and bacterial lipids in authigenic carbonate crusts from Eastern Mediterranean mud volcanoes. Org Geochem 37:484–500CrossRefGoogle Scholar
  9. 9.
    Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320PubMedCrossRefGoogle Scholar
  10. 10.
    Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468PubMedCrossRefGoogle Scholar
  11. 11.
    Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  12. 12.
    Charlou JL, Donval JP, Zitter T et al (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Res I 50:941–958CrossRefGoogle Scholar
  13. 13.
    Cita MB, Ryan WBF, Paggi L (1981) Prometheus mud-breccia: an example of shale diapirism in the Western Mediterranean Ridge. Ann Geo Pays Hellen 30:543–570Google Scholar
  14. 14.
    Constan L (2009) A correlation of anaerobic methane oxidizing archaea with geochemical gradients in Coastal Californian Marine sediments. Dissertation, The University of British ColumbiaGoogle Scholar
  15. 15.
    Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410PubMedCrossRefGoogle Scholar
  16. 16.
    DeLong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean \primes interior. Science 311:496–503PubMedCrossRefGoogle Scholar
  17. 17.
    DeSantis TZ, Hugenholtz P, Keller K et al (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:394–399CrossRefGoogle Scholar
  18. 18.
    Dhillon A, Lever M, Lloyd KG et al (2005) Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Appl Environ Microbiol 71:4592–4601PubMedCrossRefGoogle Scholar
  19. 19.
    Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent- contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877, 20PubMedGoogle Scholar
  20. 20.
    Fuerst JA (1995) The Planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology-UK 141:1493–1506CrossRefGoogle Scholar
  21. 21.
    Gillan DC, Danis B (2007) The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Res IΙ 54:1682–1690CrossRefGoogle Scholar
  22. 22.
    Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. Strain 1. Proc Natl Acad Sci USA 100:8298–8303PubMedCrossRefGoogle Scholar
  23. 23.
    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4):237–264Google Scholar
  24. 24.
    Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216PubMedCrossRefGoogle Scholar
  25. 25.
    Grote J, Jost G, Labrenz M, Herndl GJ, Juergens K (2008) Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Appl Environ Microbiol 74:7546–7551PubMedCrossRefGoogle Scholar
  26. 26.
    Haese RR, Hensen C, De Lange GJ (2006) Pore water geochemistry of Eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225:191–208CrossRefGoogle Scholar
  27. 27.
    Harris JK, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70:845–849PubMedCrossRefGoogle Scholar
  28. 28.
    Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499PubMedCrossRefGoogle Scholar
  29. 29.
    Heijs SK, Laverman AM, Forney LJ, Hardoim PR, Van Elsas JD (2008) Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiol Ecol 64:362–377, 30PubMedCrossRefGoogle Scholar
  30. 30.
    Hill TCJ, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11PubMedCrossRefGoogle Scholar
  31. 31.
    Hinrichs KU, Hayes JM, Sylva SP, Brewert PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805PubMedCrossRefGoogle Scholar
  32. 32.
    Horn HS (1966) Measurement of "overlap" in comparative ecological studies. Am Nat 100:419–424CrossRefGoogle Scholar
  33. 33.
    Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  34. 34.
    Inagaki F, Nunoura T, Nakagawa S et al (2006) Biogeographical Distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc Natl Acad Sci USA 103:2815–2820PubMedCrossRefGoogle Scholar
  35. 35.
    Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the e-Proteobacteria isolated from Okinawa trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482PubMedCrossRefGoogle Scholar
  36. 36.
    Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the Mesopelagic Zone of the Pacific Ocean. Nature 409:507–510PubMedCrossRefGoogle Scholar
  37. 37.
    Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2:114–125CrossRefGoogle Scholar
  38. 38.
    Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefGoogle Scholar
  39. 39.
    Knittel K, Boetius A, Lemke A et al (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20:269–294CrossRefGoogle Scholar
  40. 40.
    Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479PubMedCrossRefGoogle Scholar
  41. 41.
    Kormas KA, Meziti A, Dählmann A, De Lange GJ, Lykousis V (2008) Characterization of methanogenic and prokaryotic assemblages based on mcrA and 16S rRNA gene diversity in sediments of the Kazan mud volcano (Mediterranean Sea). Geobiology 6:450–460PubMedCrossRefGoogle Scholar
  42. 42.
    Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611PubMedCrossRefGoogle Scholar
  43. 43.
    Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. CRC Press, Boca RatonGoogle Scholar
  44. 44.
    Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b Archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230PubMedCrossRefGoogle Scholar
  45. 45.
    Lösekann T, Knittel K, Nadalig T et al (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362PubMedCrossRefGoogle Scholar
  46. 46.
    Lykousis V, Alexandri S, Woodside J, de Lange G, Dählmann A, Perissoratis C, Heeschen K, Ioakim C, Sakellariou D, Nomikou P, Rousakis G, Casas D, Ballas D, Ercilla G (2009) Mud volcanoes and gas hydrates in the Anaximander Mountains (Eastern Mediterranean Sea). Mar Petrol Geol 26:854–872CrossRefGoogle Scholar
  47. 47.
    Lykousis V, Alexandri S, Woodside J, Nomikou P, Perissoratis C, Sakellariou D, De Lange G, Dahlmann A, Casas D, Rousakis G, Ballas D, Ioakim C (2004) New evidence of extensive active mud volcanism in the Anaximander Mountains (Eastern Mediterranean): The "ATHINA" Mud Volcano. Environ Geol 46:1030–1037CrossRefGoogle Scholar
  48. 48.
    Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796PubMedCrossRefGoogle Scholar
  49. 49.
    Michaelis W, Seifert R, Nauhaus K et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015PubMedCrossRefGoogle Scholar
  50. 50.
    Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42CrossRefGoogle Scholar
  51. 51.
    Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247PubMedCrossRefGoogle Scholar
  52. 52.
    Morisita M (1959) Measuring of interspecific association and similarity between communities. Mem Fac Sci Kyushu Univ Ser E (Biol) 3:65–80Google Scholar
  53. 53.
    Olu-Le Roy K, Sibuet M, Fiala-Médioni A et al (2004) Cold seep communities in the deep Eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep Sea Res I 51:1915–1936CrossRefGoogle Scholar
  54. 54.
    Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. DeepSea Res IΙ 57:2008–2021Google Scholar
  55. 55.
    Orphan VJ, Hinrichs KU, Ussler Iii W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001) Comparative analysis of methane-oxidizing Archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934PubMedCrossRefGoogle Scholar
  56. 56.
    Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487PubMedCrossRefGoogle Scholar
  57. 57.
    Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. P Natl Acad Sci USA 99:7663–7668CrossRefGoogle Scholar
  58. 58.
    Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444PubMedCrossRefGoogle Scholar
  59. 59.
    Pancost RD, Bouloubassi I, Aloisi G, Sinninghe Damsté JS (2001) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem 32:695–707CrossRefGoogle Scholar
  60. 60.
    Pancost RD, Sinninghe Damsté JS, De Lint S, Van Der Maarel MJEC, Gottschal JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132PubMedCrossRefGoogle Scholar
  61. 61.
    Pape T, Kasten S, Zabel M, Bahr A, Abegg F, Hohnberg H-J, Bohrmann G (2010) Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo Mar Lett 30:187–206CrossRefGoogle Scholar
  62. 62.
    Perner M, Seifert R, Weber S, Koschinsky A, Schmidt K, Strauss H, Peters M, Haase K, Imhoff JF (2007) Microbial CO2 fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge. Environ Microbiol 9:1186–1201PubMedCrossRefGoogle Scholar
  63. 63.
    Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. P Natl Acad Sci USA 105:7052–7057CrossRefGoogle Scholar
  64. 64.
    Pielou EC (1969) Association tests versus homogeneity tests: their use in subdividing quadrats into groups. Vegetatio 18:4–18CrossRefGoogle Scholar
  65. 65.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196PubMedCrossRefGoogle Scholar
  66. 66.
    Reed AJ, Lutz RA, Vetriani C (2006) Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10:199–211PubMedCrossRefGoogle Scholar
  67. 67.
    Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340Google Scholar
  68. 68.
    Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288PubMedGoogle Scholar
  69. 69.
    Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  70. 70.
    Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386PubMedCrossRefGoogle Scholar
  71. 71.
    Stach EM, Bull A (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Leeuwenhoek 87:3–9PubMedCrossRefGoogle Scholar
  72. 72.
    Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449PubMedCrossRefGoogle Scholar
  73. 73.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  74. 74.
    Teske A, Hinrichs KU, Edgcomb V et al (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007PubMedCrossRefGoogle Scholar
  75. 75.
    Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18PubMedCrossRefGoogle Scholar
  76. 76.
    Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318PubMedCrossRefGoogle Scholar
  77. 77.
    Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–323PubMedCrossRefGoogle Scholar
  78. 78.
    Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484PubMedCrossRefGoogle Scholar
  79. 79.
    Webster G, John Parkes R, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru margin. FEMS Microbiol Ecol 58:65–85PubMedCrossRefGoogle Scholar
  80. 80.
    Webster G, Parkes RJ, Fry JC, Weightman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70:5708–5713PubMedCrossRefGoogle Scholar
  81. 81.
    Webster G, Watt LC, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ (2006) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ Microbiol 8:1575–1589PubMedCrossRefGoogle Scholar
  82. 82.
    Webster G, Yarram L, Freese E, Köster J, Sass H, Parkes RJ, Weightman AJ (2007) Distribution of candidate division JS1 and other bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiol Ecol 62:78–89PubMedCrossRefGoogle Scholar
  83. 83.
    Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719PubMedCrossRefGoogle Scholar
  84. 84.
    Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302CrossRefGoogle Scholar
  85. 85.
    Woodside JM, Ivanov MK et al (1998) Shallow gas and gas hydrates in the Anaximander Mountains region. Eastern Mediterranean Sea Gas hydrates: relevance to world margin stability and climate change Geol Soc Spec Publ 137:177–193Google Scholar
  86. 86.
    Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143:3913–3919PubMedCrossRefGoogle Scholar
  87. 87.
    Zitter TAC (2006) Mud volcanism and fluid emissions in Eastern Mediterranean neotectonic zones, VU UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria G. Pachiadaki
    • 1
  • Argyri Kallionaki
    • 2
  • Anke Dählmann
    • 3
  • Gert J. De Lange
    • 3
  • Konstantinos Ar. Kormas
    • 1
    Email author
  1. 1.Department of Ichthyology and Aquatic Environment, School of Agricultural SciencesUniversity of ThessalyVolosGreece
  2. 2.Environmental Engineering DepartmentTechnical University of CreteChaniaGreece
  3. 3.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations