Microbial Ecology

, Volume 62, Issue 2, pp 446–459 | Cite as

Purple-Pigmented Violacein-Producing Duganella spp. Inhabit the Rhizosphere of Wild and Cultivated Olives in Southern Spain

  • Sergio Aranda
  • Miguel Montes-Borrego
  • Blanca B. Landa
Plant Microbe Interactions

Abstract

Bacteria have evolved mechanisms that allow them to grow and survive in highly competitive environments like soil and the rhizosphere. Using classical microbiological, physiological, and genetic analyses, we isolated and identified for the first time Duganella spp. associated with the rhizosphere of woody plants in Mediterranean environments that are able to produce violacein, a blue–purple secondary metabolite of considerable biotechnological interest. Based on physiological and biochemical characterization and phylogenetic analysis of different genes including 16S rRNA, gyrB, and vioA (implicated in the synthesis of violacein), the seven Duganella spp. strains isolated and studied were differentiated according to their host of origin (wild versus cultivated olives) and potentially might belong to new species. All the Duganella spp. strains produced violacein in vitro, with natural production levels significantly higher than that previously reported for other violacein-producing bacteria without optimizing growing conditions. The important biological, medical, and industrial applications of violacein make these bacteria good candidates for their biotechnological exploitation because low violacein yields are considered as one of the main limitations of using wild-type strains for extensive exploitation and pigment production. Independent of violacein production, purple-pigmented strains from olives showed proteolytic and lipolytic activities and a weak siderophore production. No in vitro inhibitory activity was demonstrated for bacteria or crude violacein filtrates against plant-pathogenic Gram-negative bacteria and fungi, but they did inhibit Gram-positive bacteria.

Supplementary material

248_2011_9840_MOESM1_ESM.pdf (104 kb)
Fig. S1Cluster analysis of physiological data from Table 2 (a), API ZYM (b), and Biolog GN2 (c) results from Duganella spp. from wild and cultivated olives. The UPGMA algorithm was applied to the similarity matrix generated from each experiment by using the Dice (binary, Table 2 data, a) or pairwise Pearson’s product-moment correlation coefficient (API ZYM and Biolog data; b, c). Values on the nodes indicated the bootstrap support (PDF 104 kb)
248_2011_9840_MOESM2_ESM.doc (56 kb)
Table S1(DOC 56.5 kb)

References

  1. 1.
    Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CRM, Simoes CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98:843–848PubMedCrossRefGoogle Scholar
  2. 2.
    Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421CrossRefGoogle Scholar
  3. 3.
    Aranda S, Montes-Borrego M, Jiménez-Díaz RM, Landa BB (2011) Microbial communities associated with the root system of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil. doi:10.1007/s11104-011-0721-2
  4. 4.
    Balibar CJ, Walsh CT (2006) In vitro biosynthesis of violacein from l-tryptophan by the enzymes VioA-E from Chromobacterium violaceum. Biochemistry 45:15444–15457PubMedCrossRefGoogle Scholar
  5. 5.
    Barreto ES, Torres AR, Barreto MR, Vasconcelos ATR, Astolfi-Fihlo S, Hungria M (2008) Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. J Ind Microbiol Biotechnol 35:783–790PubMedCrossRefGoogle Scholar
  6. 6.
    Belaj A, Muñoz-Diez C, Baldoni L, Satovic Z, Barranco D (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hortic 124:323–330CrossRefGoogle Scholar
  7. 7.
    Berg G, Roskot N, Steidle A, Ebert L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338PubMedCrossRefGoogle Scholar
  8. 8.
    Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005) Influence of plant species on population dynamics, genotype diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol Ecol 52:59–69PubMedCrossRefGoogle Scholar
  9. 9.
    Besnard G, Khadari B, Baradat P, Bervillé A (2002) Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor Appl Genet 104:1353–1361PubMedCrossRefGoogle Scholar
  10. 10.
    Brady SF, Chao CJ, Handelsman J, Clardy J (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3:1981–1984PubMedCrossRefGoogle Scholar
  11. 11.
    Bronzini V, Giannettini J, Gambotti C, Maury J (2002) Genetic relationships between cultivated and wild olives of Corsica and Sardinia using RAPD markers. Euphytica 123:263–271CrossRefGoogle Scholar
  12. 12.
    Caldas LR, Leitao ACC, Santos SM, Tyrrel RM (1978) Preliminary experiments on the photobiological properties of violacein. International Symposium on Current Topics Radiobiology and Photobiology. Rio de Janeiro, Brasil, pp 121–131Google Scholar
  13. 13.
    Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726PubMedGoogle Scholar
  14. 14.
    De Azevedo MBM, Alderete J, Rodríguez JA, Souza AO, Rettori D, Torsoni MA, Faljoni-Alario A, Haun M, Durán N (2000) Biological activities of violacein, a new antitumoral indole derivative, in an inclusion complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem 37:93–101CrossRefGoogle Scholar
  15. 15.
    De Carvalho DD, Costa FTM, Durán N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol Vitro 20:1514–1521CrossRefGoogle Scholar
  16. 16.
    Dessaux Y, Elmerich C, Faure D (2004) Violacein: a molecule of biological interest originating from the soil-borne bacterium Chromobacterium violaceum. La Revue de Medicine Interne 25:659–662CrossRefGoogle Scholar
  17. 17.
    Durán N, Antonio RV, Haun M, Pilli RA (1994) Biosynthesis of a trypanocide by Chromobacterium violaceum. World J Microbiol Biotechnol 10:686–690CrossRefGoogle Scholar
  18. 18.
    Durán N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133Google Scholar
  19. 19.
    Durán N, Menck CF (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27:201–222PubMedCrossRefGoogle Scholar
  20. 20.
    Gillis M, De Ley J (2006) The genera Chromobacterium and Janthinobacterium. Prokaryotes 5:737–746CrossRefGoogle Scholar
  21. 21.
    Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140CrossRefGoogle Scholar
  22. 22.
    Hakvåg S, Fjaervik E, Klinkenberg G, Borgos SEF, Josefsen KD, Ellingsen TE, Zotchev SB (2009) Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trøndelag, Norway. Mar Drugs 7:576–588PubMedCrossRefGoogle Scholar
  23. 23.
    Hervàs A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11:1612–1623PubMedCrossRefGoogle Scholar
  24. 24.
    Hiraishi A, Shin Y-K, Sugiyama J (1997) Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 47:1249–1252PubMedCrossRefGoogle Scholar
  25. 25.
    Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey's manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, pp 560–561Google Scholar
  26. 26.
    Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various oxidative bacteria. J Bacteriol 66:24–26PubMedGoogle Scholar
  27. 27.
    Inniss WE, Mayfield CI (1979) Effect of temperature on violacein production in a psychrotrophic Chromobacterium from Lake Ontario sediment. Microb Ecol 5:51–56CrossRefGoogle Scholar
  28. 28.
    IOOC (International Olive Oil Council) (2009) World olive oil figures. Available at: http://www.internationaloliveoil.org/web/aaingles/corp/AreasActivitie/economics/AreasActivitie.html
  29. 29.
    Issaoui M, Mechri B, Echbili A, Dabbou S, Yanghi A, Belguit H, Trigui A, Hammami M (2008) Chemometric characterization of five Tunisian varietals of Olea europaea L. olive fruit according to different maturation indices. J Food Lipids 15:277–296CrossRefGoogle Scholar
  30. 30.
    Jiang P-X, Wang H-S, Zhang C, Lou K, Xing X-H (2010) Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl Microbiol Biotechnol 86:1077–1088PubMedCrossRefGoogle Scholar
  31. 31.
    Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  32. 32.
    Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM (2006) Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 55:351–368PubMedCrossRefGoogle Scholar
  33. 33.
    Landa BB, Mavrodi DM, Thomashow LS, Weller DM (2003) Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopatology 93:982–994CrossRefGoogle Scholar
  34. 34.
    Li WJ, Zhang YQ, Park DJ, Li CT, Xu LH, Kim CJ, Jiang CL (2004) Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 54:1811–1814PubMedCrossRefGoogle Scholar
  35. 35.
    Liu GY, Nizet V (2009) Color me bad: microbial pigments as virulence factors. Trends Microbiol 17:406–413PubMedCrossRefGoogle Scholar
  36. 36.
    Logan AN (1989) Numerical taxonomy of violet-pigmented, Gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov. Int J Syst Bacteriol 39:450–456CrossRefGoogle Scholar
  37. 37.
    Lu Y, Wang L, Xue Y, Zhang C, Xiang X, Lou K, Zhang Z, Li Y, Zhang G, Bi J, Su Z (2009) Production of violet pigment by a newly isolated psychotrophic bacterium from a glacier in Xinjiang, China. Biochem Eng J 43:135–141CrossRefGoogle Scholar
  38. 38.
    Lumaret R, Ouazzani N (2001) Ancient wild olives in Mediterranean forests. Nature 413:700PubMedCrossRefGoogle Scholar
  39. 39.
    Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux MF, Di Giusto F (2004) Allozyme variation of oleaster populations wild olive tree Olea europaea L. in the Mediterranean Basin. Heredity 92:343–351PubMedCrossRefGoogle Scholar
  40. 40.
    MacCarthy SA, Sakata T, Kakimoto D, Johnson RM (1985) Production and isolation of purple pigment by Alteromonas luteoviolacea. Bull Jpn Soc Sci Fish 51:479–484Google Scholar
  41. 41.
    Männistö MK, Häggblom MM (2006) Characterization of psychotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–243PubMedCrossRefGoogle Scholar
  42. 42.
    Margalith PZ (1992) Pigment microbiology. Chapman and Hall, LondonGoogle Scholar
  43. 43.
    Matz C, Dienes P, Boeningk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K (2004) Impacts of violacein-producing bacteria on survival and feeding of Bacteriovorus nanoflagellates. Appl Environ Microbiol 70:1593–1599PubMedCrossRefGoogle Scholar
  44. 44.
    Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, Steinberg P, Kjelleberg S (2008) Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 3:e2744. doi:10.1371/journal.pone.0002744 PubMedCrossRefGoogle Scholar
  45. 45.
    Mavrodi DM, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide H, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879PubMedCrossRefGoogle Scholar
  46. 46.
    Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS III (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624PubMedGoogle Scholar
  47. 47.
    Mendes AS, De Carvahlo JE, Duarte MCT, Durán N, Bruns RE (2001) Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnol Lett 23:1963–1969CrossRefGoogle Scholar
  48. 48.
    Michelakis N (2002) Monumental olive trees in the world, in Greece and in Crete. Proceedings of International Symposium, Sitia, CreteGoogle Scholar
  49. 49.
    Nakamura Y, Asada C, Sawada T (2003) Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol Bioprocess Eng 8:37–40CrossRefGoogle Scholar
  50. 50.
    Nakamura Y, Sawara T, Morita Y, Tamiya E (2002) Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J 12:79–86CrossRefGoogle Scholar
  51. 51.
    Pantanella F, Berlutti F, Passariello S, Sarli S, Morea C, Schippa S (2007) Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 102:992–999PubMedGoogle Scholar
  52. 52.
    Rettori D, Durán N (1998) Production, extraction and purification of violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J Microbiol Biotechnol 14:685–688CrossRefGoogle Scholar
  53. 53.
    Riveros R, Haun M, Campos V, Durán N (1988) Bacterial chemistry—IV. Complete characterization of violacein: an antibiotic and trypanocide pigment from Chromobacterium violaceum. Arquivos de Biologia e Tecnologia 31:475–487Google Scholar
  54. 54.
    Ruhul-Momen AZM, Hoshino T (2000) Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyndole side. Biosci Biotechnol Biochem 64:539–549CrossRefGoogle Scholar
  55. 55.
    Ryan RP, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383CrossRefGoogle Scholar
  56. 56.
    Sánchez C, Braña AF, Méndez C, Salas JA (2006) Reevaluation of the violacein biosynthetic pathway and its relationships to indolocarbazole biosynthesis. Chembiochem 7:1231–1240PubMedCrossRefGoogle Scholar
  57. 57.
    Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56PubMedCrossRefGoogle Scholar
  58. 58.
    Sciancalepore V, Colangelo M, Sorlini C, Ranalli G (1996) Composting of effluent from a new two-phases centrifuge olive mill. Toxicol Environ Chem 55:145–158CrossRefGoogle Scholar
  59. 59.
    Shirata A, Tsukamoto T, Yasui H, Hayasaka T, Hayasaka S, Kojima A, Kato H (2000) Isolation of bacteria producing bluish-purple pigment and use for dyeing. Japan Agr Res Quarterly 34:131–140Google Scholar
  60. 60.
    Shivaji S, Ray MK, Seshu Kumar GS, Reddy GSN, Saisree L, Wynn-Williams DD (1991) Identification of Janthinobacterium lividum from the soils of the islands of Scotia Ridge and from Antarctic peninsula. Polar Biol 11:267–271CrossRefGoogle Scholar
  61. 61.
    Stephens C (2004) Microbial genomics: tropical treasure? Curr Biol 14:R65–R66PubMedCrossRefGoogle Scholar
  62. 62.
    Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rRNA sequence analysis. Microb Ecol 55:415–424PubMedCrossRefGoogle Scholar
  63. 63.
    Terral JF, Badal E, Heinz C, Roiron S, Thiebault S, Figueiral I (2004) A hydraulic conductivity model points to post-neogene survival of the Mediterranean olive in riparian habitat. Ecology 85:3158–3165CrossRefGoogle Scholar
  64. 64.
    Wang H, Peixia J, Yuan L, Zhiyong R, Ruibo J, Xin-Hui X, Kai L, Dong W (2009) Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem Eng J 44:119–124CrossRefGoogle Scholar
  65. 65.
    Weisskopf L, Le Bayon RC, Kohler F, Page V, Jossi M, Gobat JM, Martinoia E, Aragno M (2008) Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: a one-year microcosms study on lupin and wheat. Soil Biol Biochem 40:1772–1780CrossRefGoogle Scholar
  66. 66.
    Yang LH, Xiong H, Lee OO, Qi S-H, Qian P-Y (2007) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from marine sponge. Lett Appl Microbiol 44:625–630PubMedCrossRefGoogle Scholar
  67. 67.
    Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the Old World. Science 187:319–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sergio Aranda
    • 1
  • Miguel Montes-Borrego
    • 1
  • Blanca B. Landa
    • 1
  1. 1.Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC)CórdobaSpain

Personalised recommendations