Microbial Ecology

, Volume 61, Issue 4, pp 917–931 | Cite as

Diversity and Biogeography of Rhizobia Isolated from Root Nodules of Glycine max Grown in Hebei Province, China

  • Qin Qin Li
  • En Tao Wang
  • Yun Zeng Zhang
  • Yan Ming Zhang
  • Chang Fu Tian
  • Xin Hua Sui
  • Wen Feng Chen
  • Wen Xin Chen
Soil Microbiology


A total of 215 rhizobial strains were isolated and analyzed with 16S rRNA gene, 16S–23S intergenic spacer, housekeeping genes atpD, recA, and glnII, and symbiotic genes nifH and nodC to understand the genetic diversity of soybean rhizobia in Hebei province, China. All the strains except one were symbiotic bacteria classified into nine genospecies in the genera of Bradyrhizobium and Sinorhizobium. Surveys on the distribution of these rhizobia in different regions showed that Bradyrhizobium japonicum and Bradyrhizobium elkanii strains were found only in neutral to slightly alkaline soils whereas Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense-related strains and strains of five Sinorhizobium genospecies were found in alkaline–saline soils. Correspondence and canonical correspondence analyses on the relationship of rhizobial distribution and their soil characteristics reveal that high soil pH, electrical conductivity, and potassium content favor distribution of the B. yuanmingense and the five Sinorhizobium species but inhibit B. japonicum and B. elkanii. High contents of available phosphorus and organic matters benefit Sinorhizobium fredii and B. liaoningense-related strains and inhibit the others groups mentioned above. The symbiotic gene (nifH and nodC) lineages among B. elkanii, B. japonicum, B. yuanmingense, and Sinorhizobium spp. were observed in the strains, signifying that vertical gene transfer was the main mechanism to maintain these genes in the soybean rhizobia. However, lateral transfer of symbiotic genes commonly in Sinorhizobium spp. and rarely in Bradyrhizobium spp. was also detected. These results showed the genetic diversity, the biogeography, and the soil determinant factors of soybean rhizobia in Hebei province of China.

Supplementary material

248_2011_9820_MOESM1_ESM.doc (48 kb)
Table ASequence similarities for 16S rRNA, atpD, recA, glnII genes, and DNA–DNA relatedness (%) among strains of the ungrouped species and related Sinorhizobium (Ensifer) species. (DOC 48 kb)
248_2011_9820_MOESM2_ESM.doc (108 kb)
Table BAccession number of housekeeping genes deposited in GenBank. (DOC 107 kb)
248_2011_9820_MOESM3_ESM.ppt (638 kb)
FigureA Dendrogram based on the cluster analysis of 16S rDNA-RFLP. The correlation coefficient was calculated and the UPGMA dendrogram was constructed by the unweighted average pair grouping method (UPGMA). Vertical dashed line indicates the level of similarity at which groups were delineated. B Phylogenetic relationships of 16S rDNA sequences inferred using the neighbor-joining method. The evolutionary distances were computed using the Kimura’s two-parameter method. The scale bar presents 1% of nucleotide substitution. Only bootstrap values above 50 are shown. C Phylogenies of housekeeping genes atpD (a), recA (b), and glnII (c), showing the relationships among isolates and reference strains. Trees were constructed by using the neighbor-joining method with a Kimura’s two-parameter distance matrix. Bootstrap probability values ≥50% are indicated at branch points. Bars, 2% nucleotide substitutions. D Phylogenetic relationships of nodC (a) and nifH (b) sequences inferred using the neighbor-joining method. The scale bar presents 2% of nucleotide substitution. Bootstrap values greater than 50% were indicated. The evolutionary distances were computed using the Kimura’s two-parameter method. E Correlation analysis between sample sites and CACAI groups of soybean rhizobia in Hebei province was instructed with the Correspondence 1.0 program in SPSS 17.0 package. The dimensions 1 and 2 were the linear combination of the two variables and may have no real meaning. Inertia value was 0.983 and 0.841, respectively, for dimensions 1 and 2, indicating that both the dimensions were closely related to the two variables. Pearson’s coefficient was 0.686 (p = 0.01), indicating that the sample sites (1, Changli; 2, Cangxian; 3, Huanghua; 4, Hejian; 5, Luanxian; 6, Baoding; 7, Tianjin) and CACAI groups of soybean were significantly correlated. (PPT 638 kb)


  1. 1.
    Wang YS, Gai JY (2002) Study on the ecological regions of soybean in China. II. Ecological environment and representative varieties. Chin J Appl Ecol 13:71–75Google Scholar
  2. 2.
    Jordan D (1982) NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  3. 3.
    Kuykendall L, Saxena B, Devine T et al (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505CrossRefGoogle Scholar
  4. 4.
    Xu LM, Ge C, Cui Z et al (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711PubMedCrossRefGoogle Scholar
  5. 5.
    Yao ZY, Kan FL, Wang ET et al (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230PubMedCrossRefGoogle Scholar
  6. 6.
    Vinuesa P, Leon-Barrios M, Silva C et al (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575PubMedCrossRefGoogle Scholar
  7. 7.
    Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  8. 8.
    Chen WX, Wang ET, Wang SY et al (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Evol Microbiol 45:153–159Google Scholar
  9. 9.
    Hungria M, Chueire L, Megias M et al (2006) Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant Soil 288:343–356CrossRefGoogle Scholar
  10. 10.
    Barcellos F, Menna P, da Silva BJ et al (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643PubMedCrossRefGoogle Scholar
  11. 11.
    Man CX, Wang H, Chen WF et al (2008) Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant Soil 310:77–87CrossRefGoogle Scholar
  12. 12.
    Yang JK, Zhang WT, Yuan TY et al (2006) Genotypic characteristics of the rrn operon and genome of indigenous soybean bradyrhizobia in cropping zones of China. Can J Microbiol 52:968–976PubMedCrossRefGoogle Scholar
  13. 13.
    Camacho M, Santamaría C, Temprano F et al (2002) Soils of the Chinese Hubei province show a very high diversity of Sinorhizobium fredii strains. Syst Appl Microbiol 25:592–602PubMedCrossRefGoogle Scholar
  14. 14.
    Wang H, Man CX, Wang ET et al (2009) Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil 314:169–182CrossRefGoogle Scholar
  15. 15.
    Hymowitz T, Newell C (1981) Taxonomy of the genus Glycine, domestication and uses of soybeans. Econ Bot 35:272–288CrossRefGoogle Scholar
  16. 16.
    Han LL, Wang ET, Han TX et al (2009) Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324:291–305CrossRefGoogle Scholar
  17. 17.
    Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell, OxfordGoogle Scholar
  18. 18.
    Versalovic J, Schneider M, De Bruijn F et al (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth Mol Cell Biol 5:25–40Google Scholar
  19. 19.
    Terefework Z, Kaijalainen S, Lindstrom K (2001) AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180PubMedCrossRefGoogle Scholar
  20. 20.
    Tan ZY, Xu XD, Wang ET et al (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879PubMedCrossRefGoogle Scholar
  21. 21.
    Rasolomampianina R, Bailly X, Fetiarison R et al (2005) Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-proteobacteria. Mol Ecol 14:4135–4146PubMedCrossRefGoogle Scholar
  22. 22.
    Laguerre G, Allard M, Revoy F et al (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63PubMedGoogle Scholar
  23. 23.
    Han TX, Wang ET, Han LL et al (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301PubMedCrossRefGoogle Scholar
  24. 24.
    Turner S, Young J (2000) The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17:309–319PubMedCrossRefGoogle Scholar
  25. 25.
    Vinuesa P, Silva C, Lorite M et al (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716PubMedCrossRefGoogle Scholar
  26. 26.
    Vinuesa P, Silva C, Werner D et al (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54PubMedCrossRefGoogle Scholar
  27. 27.
    Laguerre G, Nour S, Macheret V et al (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiol 147:981–993Google Scholar
  28. 28.
    Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant-and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339PubMedGoogle Scholar
  29. 29.
    Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  30. 30.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  31. 31.
    Martens M, Dawyndt P, Coopman R et al (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214PubMedCrossRefGoogle Scholar
  32. 32.
    Vinuesa P, Rojas-Jimenez K, Contreras-Moreira B et al (2008) Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol 74:6987–6996PubMedCrossRefGoogle Scholar
  33. 33.
    Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  34. 34.
    Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extensible file format for systematic information. Syst Biol 46:590–621PubMedCrossRefGoogle Scholar
  35. 35.
    ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  36. 36.
    Li JH, Wang ET, Chen WF et al (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  37. 37.
    Wang LL, Wang ET, Liu J et al (2006) Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb Ecol 52:436–443PubMedCrossRefGoogle Scholar
  38. 38.
    Abaidoo R, Keyser H, Singleton P et al (2002) Comparison of molecular and antibiotic resistance profile methods for the population analysis of Bradyrhizobium spp. (TGx) isolates that nodulate the new TGx soybean cultivars in Africa. J Appl Microbiol 92:109–117PubMedCrossRefGoogle Scholar
  39. 39.
    Saeki Y, Naoto A, Tsukamoto S et al (2006) Diversity and geographical distribution of indigenous soybean-nodulating bradyrhizobia in Japan. Soil Sci Plant Nutr 52:418–426CrossRefGoogle Scholar
  40. 40.
    Madrzak C, Golinska B, Kroliczak J et al (1995) Diversity among field populations of Bradyrhizobium japonicum in Poland. Appl Environ Microbiol 61:1194–1200PubMedGoogle Scholar
  41. 41.
    Lie T, Goktan D, Engin M et al (1987) Co-evolution of the legume-Rhizobium association. Plant Soil 100:171–181CrossRefGoogle Scholar
  42. 42.
    Li QQ, Wang ET, Chang YL et al (2011) Ensifer (Sinorhizobium) sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils in Hebei province of China. Int J Syst Evol Microbiol (in press)Google Scholar
  43. 43.
    Toledo I, Lloret L, Martinez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64PubMedCrossRefGoogle Scholar
  44. 44.
    Yang SS, Bellogin RA, Buendia A et al (2001) Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J Biotechnol 91:243–255PubMedCrossRefGoogle Scholar
  45. 45.
    Sprent JI (1982) Nitrogen fixation by grain legumes in the UK. Phil Trans R Soc Lond B 296:387–395CrossRefGoogle Scholar
  46. 46.
    Oliveira JP, Galli-Terasawa LV, Enke CG et al (2010) Genetic diversity of rhizobia in a Brazilian oxisol nodulating Mesoamerican and Andean genotypes of common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol. doi:10.1007/s11274-010-0501-9 Google Scholar
  47. 47.
    Jonhston AWBB, Beynon JL, Buchanan-Wollaston AV, Setchell SM et al (1978) High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature 276:634–636CrossRefGoogle Scholar
  48. 48.
    Johnston AWB, Beringer JE (1977) Chromosomal recombination between Rhizobium species. Nature 267:611–613CrossRefGoogle Scholar
  49. 49.
    Flores M, Mavingui P, Perret X et al (2000) Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: toward a natural genomic design. Proc Nat Am Sci USA 97:9138–9143CrossRefGoogle Scholar
  50. 50.
    Barcellos FG, Menna P, Batista JS et al (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643PubMedCrossRefGoogle Scholar
  51. 51.
    Martiny J, Bohannan B, Brown J et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112PubMedCrossRefGoogle Scholar
  52. 52.
    Giongo A, Ambrosini A, Vargas L et al (2008) Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. Appl Soil Ecol 38:261–269CrossRefGoogle Scholar
  53. 53.
    Saeki Y, Kaneko A, Hara T et al (2005) Phylogenetic analysis of soybean-nodulating rhizobia isolated from alkaline soils in Vietnam. Soil Sci Plant Nutr 51:1043–1052CrossRefGoogle Scholar
  54. 54.
    Suzuki K, Oguro H, Yamakawa T et al (2008) Diversity and distribution of indigenous soybean-nodulating rhizobia in the Okinawa islands, Japan. Soil Sci Plant Nutr 54:237–246CrossRefGoogle Scholar
  55. 55.
    Appunu C, N’Zoue A, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 74:5991–5996PubMedCrossRefGoogle Scholar
  56. 56.
    Sarita S, Sharma P, Priefer U et al (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11PubMedCrossRefGoogle Scholar
  57. 57.
    Wernegreen J, Harding E, Riley M (1997) Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Aca Sci USA 94:5483–5488CrossRefGoogle Scholar
  58. 58.
    Aguilar O, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci 101:13548–13553PubMedCrossRefGoogle Scholar
  59. 59.
    Sullivan J, Patrick H, Lowther W et al (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989PubMedCrossRefGoogle Scholar
  60. 60.
    Laranjo M, Alexandre A, Rivas R et al (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400PubMedCrossRefGoogle Scholar
  61. 61.
    Li QF, Zhang XP, Zou L et al (2009) Horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants Astragalus luteolus and Astragalus ernestii in Sichuan, China. FEMS Microbiol Ecol 70:71–79PubMedCrossRefGoogle Scholar
  62. 62.
    Sullivan JT, Patrick HN, Lowther WL et al (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Nat Aca Sci USA 92:8985–8989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qin Qin Li
    • 1
  • En Tao Wang
    • 1
    • 2
  • Yun Zeng Zhang
    • 1
  • Yan Ming Zhang
    • 1
  • Chang Fu Tian
    • 1
  • Xin Hua Sui
    • 1
  • Wen Feng Chen
    • 1
  • Wen Xin Chen
    • 1
  1. 1.State Key Laboratory of Agrobiotechnology/College of Biological SciencesChina Agricultural UniversityBeijingChina
  2. 2.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxico D.F.Mexico

Personalised recommendations