Microbial Ecology

, Volume 61, Issue 4, pp 769–782 | Cite as

Differences Between Bacterial Communities Associated with the Surface or Tissue of Mediterranean Sponge Species

  • Berna Gerçe
  • Thomas Schwartz
  • Christoph Syldatk
  • Rudolf Hausmann
Invertebrate Microbiology

Abstract

Bacterial communities associated with the surfaces of several Mediterranean sponge species (Agelas oroides, Chondrosia reniformis, Petrosia ficiformis, Geodia sp., Tethya sp., Axinella polypoides, Dysidea avara, and Oscarella lobularis) were compared to those associated with the mesohyl of sponges and other animate or inanimate reference surfaces as well as with those from bulk seawater. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified bacterial 16S ribosomal RNA genes obtained from the surfaces and tissues of these sponges demonstrated that the bacterial communities were generally different from each other. The bacterial communities from sponges were different from those on reference surfaces or from bulk seawater. Additionally, clear distinctions in 16S rDNA fingerprint patterns between the bacterial communities from mesohyl samples of “high-microbial abundance (HMA) sponges” and “low-microbial abundance sponges” were revealed by DGGE and cluster analysis. A dominant occurrence of particularly GC-rich 16S ribosomal DNA (rDNA) fragments was found only in the DGGE banding pattern obtained from the mesohyl of HMA sponges. Furthermore, sequencing analysis of 16S rDNA fragments obtained from mesohyl samples of HMA sponges revealed a dominant occurrence of sponge-associated bacteria. The bacterial communities within the mesohyl of HMA sponges showed a close relationship to each other and seem to be sponge-specific.

References

  1. 1.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237CrossRefPubMedGoogle Scholar
  2. 2.
    Bergquist PR (1978) Sponges. University of California Press, BerkeleyGoogle Scholar
  3. 3.
    Wilkinson CR (1984) Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc R Soc B 220:509–517CrossRefGoogle Scholar
  4. 4.
    Schmitt S, Wehrl M, Bayer K, Siegl A, Hentschel U (2007) Marine sponges as models for commensal microbe–host interactions. Symbiosis 44:43–50Google Scholar
  5. 5.
    Thakur NL, Muller WEG (2005) Sponge–bacteria association: a useful model to explore symbiosis in marine invertebrates. Symbiosis 39:109–116Google Scholar
  6. 6.
    Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol R 71:295–347CrossRefGoogle Scholar
  7. 7.
    Vacelet J, Donadey C (1977) Electron-microscope study of association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314CrossRefGoogle Scholar
  8. 8.
    Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177CrossRefPubMedGoogle Scholar
  9. 9.
    Ribes M, Coma R, Gili J-M (1999) Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the northwestern Mediterranean sea. J Plankton Res 21:1077–1100CrossRefGoogle Scholar
  10. 10.
    Friedrich AB, Fischer I, Proksch P, Hacker H, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113CrossRefGoogle Scholar
  11. 11.
    Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Müller WEG (ed) Marine molecular biotechnology—sponges (Porifera). Springer, Berlin, pp 59–88CrossRefGoogle Scholar
  12. 12.
    Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-Proteobacterium. Mar Biol 138:843–851CrossRefGoogle Scholar
  13. 13.
    Weisz JB, Lindquist N, Martens CS (2008) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376CrossRefPubMedGoogle Scholar
  14. 14.
    Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440CrossRefPubMedGoogle Scholar
  15. 15.
    Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol 148:1221–1230CrossRefGoogle Scholar
  16. 16.
    Lafi FF, Garson MJ, Fuerst JA (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50:213–220CrossRefPubMedGoogle Scholar
  17. 17.
    Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732CrossRefPubMedGoogle Scholar
  18. 18.
    Thoms C, Horn M, Wagner M, Henschel U, Proksch P (2003) Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142:685–692Google Scholar
  19. 19.
    Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridisation (FISH). Mar Biol 134:461–470CrossRefGoogle Scholar
  20. 20.
    Gerce B, Schwartz T, Voigt M, Ruhle S, Kirchen S, Putz A, Proksch P, Obst U, Syldatk C, Hausmann R (2009) Morphological, bacterial, and secondary metabolite changes of Aplysina aerophoba upon long-term maintenance under artificial conditions. Microb Ecol 58:865–878CrossRefPubMedGoogle Scholar
  21. 21.
    Thakur NL, Anil AC, Muller WEG (2004) Culturable epibacteria of the marine sponge Ircinia fusca: temporal variations and their possible role in the epibacterial defense of the host. Aquat Microb Ecol 37:295–304CrossRefGoogle Scholar
  22. 22.
    Lee OO, Lau SCK, Qian PY (2006) Consistent bacterial community structure associated with the surface of the sponge Mycale adhaerens bowerbank. Microb Ecol 52:693–707CrossRefPubMedGoogle Scholar
  23. 23.
    Lee OO, Qian PY (2004) Potential control of bacterial epibiosis on the surface of the sponge Mycale adhaerens. Aquat Microb Ecol 34:11–21CrossRefGoogle Scholar
  24. 24.
    Lee OO, Lau SCK, Qian PY (2006) Defense against epibiosis in the sponge Mycale adhaerens: modulating the bacterial community associated with its surface. Aquat Microb Ecol 43:55–65CrossRefGoogle Scholar
  25. 25.
    Dobretsov S, Dahms HU, Tsoi MY, Qian PY (2005) Chemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities. Mar Ecol Prog Ser 297:119–129CrossRefGoogle Scholar
  26. 26.
    Schlaeppy ML, Schottner SI, Lavik G, Kuypers MMM, de Beer D, Hoffmann F (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602CrossRefGoogle Scholar
  27. 27.
    Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J 22:1–10CrossRefGoogle Scholar
  28. 28.
    Sipkema D, Blanch HW (2010) Spatial distribution of bacteria associated with the marine sponge Tethya californiana. Mar Biol 157:627–638CrossRefGoogle Scholar
  29. 29.
    Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF (2007) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59:47–63CrossRefPubMedGoogle Scholar
  30. 30.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  31. 31.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedGoogle Scholar
  32. 32.
    Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd, PlymouthGoogle Scholar
  33. 33.
    Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  34. 34.
    Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci 268:493–497CrossRefPubMedGoogle Scholar
  35. 35.
    Galtier N, Lobry JR (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636CrossRefPubMedGoogle Scholar
  36. 36.
    Bayer K, Schmitt S, Henschel U (2007) Microbial nitrification in Mediterranean sponges: possible involvement of ammonium-oxidizing Betaproteobacteria. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research—biodiversity, innovation and sustainability—2007, vol SérieLivros 28. Museu Nacional, Rio de Janeiro, pp 165–171Google Scholar
  37. 37.
    Weisz JB, Hentschel U, Lindquist N, Martens CS (2007) Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar Biol 152:475–483CrossRefGoogle Scholar
  38. 38.
    Maldonado M (2007) Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK 87:1701–1713CrossRefGoogle Scholar
  39. 39.
    Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  40. 40.
    Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643CrossRefPubMedGoogle Scholar
  41. 41.
    Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110:45–57CrossRefGoogle Scholar
  42. 42.
    Guenther J, Walker-Smith G, Waren A, De Nys R (2007) Fouling-resistant surfaces of tropical sea stars. Biofouling 23:413–418CrossRefPubMedGoogle Scholar
  43. 43.
    Lachnit T, Blumel M, Imhoff JF, Wahl M (2009) Specific epibacterial communities on macroalgae: phylogeny matters more than habitat. Aquat Biol 5:181–186Google Scholar
  44. 44.
    Jones PR, Cottrell MT, Kirchman DL, Dexter SC (2007) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53:153–162CrossRefPubMedGoogle Scholar
  45. 45.
    Lee JW, Nam JH, Kim YH, Lee KH, Lee DH (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol 46:174–182CrossRefPubMedGoogle Scholar
  46. 46.
    Dang HY, Li TG, Chen MN, Huang GQ (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60CrossRefPubMedGoogle Scholar
  47. 47.
    Chelossi E, Milanese M, Milano A, Pronzato R, Riccardi G (2004) Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). J Exp Mar Biol Ecol 309:21–33CrossRefGoogle Scholar
  48. 48.
    Lau SCK, Tsoi MMY, Li XC, Dobretsov S, Plakhotnikova Y, Wong PK, Qian PY (2005) Pseudoalteromonas spongiae sp nov., a novel member of the gamma-Proteobacteria isolated from the sponge Mycale adhaerens in Hong Kong waters. Int J Syst Evol Microbiol 55:1593–1596CrossRefPubMedGoogle Scholar
  49. 49.
    Ivanova EP, Shevchenko LS, Sawabe TL, Lysenko AM, Svetashev VI, Gorshkova NM, Satomi M, Christen R, Mikhailov VV (2002) Pseudoalteromonas maricaloris sp nov., isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia] NCIMB 2033 as Pseudoalteromonas flavipulchra sp nov. Int J Syst Evol Microbiol 52:263–271PubMedGoogle Scholar
  50. 50.
    Lee OO, Qian PY (2003) Chemical control of bacterial epibiosis and larval settlement of Hydroides elegans in the red sponge Mycale adherens. Biofouling 19:171–180CrossRefPubMedGoogle Scholar
  51. 51.
    Holmstrom C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Berna Gerçe
    • 1
  • Thomas Schwartz
    • 2
  • Christoph Syldatk
    • 1
  • Rudolf Hausmann
    • 1
  1. 1.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Functional Interfaces (IFG), Microbiology of Natural and Technical Interfaces DepartmentKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations