Advertisement

Microbial Ecology

, Volume 61, Issue 3, pp 582–594 | Cite as

The Marine Isolate Novosphingobium sp. PP1Y Shows Specific Adaptation to Use the Aromatic Fraction of Fuels as the Sole Carbon and Energy Source

  • Eugenio NotomistaEmail author
  • Francesca Pennacchio
  • Valeria Cafaro
  • Giovanni Smaldone
  • Viviana Izzo
  • Luca Troncone
  • Mario Varcamonti
  • Alberto Di Donato
Environmental Microbiology

Abstract

Novosphingobium sp. PP1Y, isolated from a surface seawater sample collected from a closed bay in the harbour of Pozzuoli (Naples, Italy), uses fuels as its sole carbon and energy source. Like some other Sphingomonads, this strain can grow as either planktonic free cells or sessile-aggregated flocks. In addition, this strain was found to grow as biofilm on several types of solid and liquid hydrophobic surfaces including polystyrene, polypropylene and diesel oil. Strain PP1Y is not able to grow on pure alkanes or alkane mixtures but is able to grow on a surprisingly wide range of aromatic compounds including mono, bi, tri and tetracyclic aromatic hydrocarbons and heterocyclic compounds. During growth on diesel oil, the organic layer is emulsified resulting in the formation of small biofilm-coated drops, whereas during growth on aromatic hydrocarbons dissolved in paraffin the oil layer is emulsified but the drops are coated only if the mixtures contain selected aromatic compounds, like pyrene, propylbenzene, tetrahydronaphthalene and heterocyclic compounds. These peculiar characteristics suggest strain PP1Y has adapted to efficiently grow at the water/fuel interface using the aromatic fraction of fuels as the sole carbon and energy source.

Keywords

PAHs Aromatic Hydrocarbon Phenanthrene Aromatic Fraction Novosphingobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are indebted to Prof. Maurilio De Felice, Università di Napoli Federico II, for critically reading the manuscript.

This work was supported by a grant from the Ministry of University and Research (PRIN/2007).

Supplementary material

248_2010_9786_MOESM1_ESM.pdf (5.4 mb)
ESM 1 (PDF 5.42 mb)

References

  1. 1.
    Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114PubMedCrossRefGoogle Scholar
  2. 2.
    Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC, Ringelberg DB, Chandler DP, Romine MF, Kennedy DW, Spadoni CM (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47:191–201PubMedCrossRefGoogle Scholar
  3. 3.
    Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from antarctic soil. Microb Ecol 43:44–54PubMedCrossRefGoogle Scholar
  4. 4.
    Beynon RJ, Oliver S (1996) Avoidance of proteolysis in extracts. In: Doonan S (ed) Protein purification protocols, vol 59. Humana, Totowa, pp 81–94CrossRefGoogle Scholar
  5. 5.
    Black JA, Birge WJ, Westerman AG, Francis PC (1983) Comparative aquatic toxicology of aromatic hydrocarbons. Fundam Appl Toxicol 3:353–358PubMedCrossRefGoogle Scholar
  6. 6.
    Brennan ML, Wu W, Fu X, Shen Z, Song W, Frost H, Vadseth C, Narine L, Lenkiewicz E, Borchers MT, Lusis AJ, Lee JJ, Lee NA, Abu-Soud HM, Ischiropoulos H, Hazen SL (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 277:17415–17427, Epub 2002 Feb 27PubMedCrossRefGoogle Scholar
  7. 7.
    Coppotelli BM, Ibarrolaza A, Dias RL, Del Panno MT, Berthe-Corti L, Morelli IS (2010) Study of the degradation activity and the strategies to promote the bioavailability of phenanthrene by Sphingomonas paucimobilis strain 20006FA. Microb Ecol 59:266–276PubMedCrossRefGoogle Scholar
  8. 8.
    Davison AD, Gillings MR, Jardine DR, Karuso P, Nouwens AS, French JJ, Veal DA, Altavilla N (1999) Sphingomonas paucimobilis BPSI-3 mutant AN2 produces a red catabolite during biphenyl degradation. J Ind Microbiol Biotechnol 23:314–319PubMedCrossRefGoogle Scholar
  9. 9.
    Desai AM, Autenrieth RL, Dimitriou-Christidis P, McDonald TJ (2008) Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation 19:223–233, Epub 2007 May 30PubMedCrossRefGoogle Scholar
  10. 10.
    Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911PubMedCrossRefGoogle Scholar
  11. 11.
    Handa N (1966) Examination on the applicability of the Phenol SulfuricAcid method to the determination of dissolved carbohydrate in sea water. J Oceanogr Soc Jpn 22:79–86Google Scholar
  12. 12.
    Henry JA (1998) Composition and toxicity of petroleum products and their additives. Hum Exp Toxicol 17:111–123PubMedCrossRefGoogle Scholar
  13. 13.
    Jenkins CL, Andrewes AG, McQuade TJ, Starr MP (1979) The pigment of Pseudomonas paucimobilis is a carotenoid (Nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3:1–4CrossRefGoogle Scholar
  14. 14.
    Kaminski M, Gilgenast E, Przyjazny A, Romanik G (2006) Procedure for and results of simultaneous determination of aromatic hydrocarbons and fatty acid methyl esters in diesel fuels by high performance liquid chromatography. J Chromatogr A 1122:153–160PubMedCrossRefGoogle Scholar
  15. 15.
    Kaminski M, Kartanowicz R, Przyjazny A (2004) Application of high-performance liquid chromatography with ultraviolet diode array detection and refractive index detection to the determination of class composition and to the analysis of gasoline. J Chromatogr A 1029:77–85PubMedCrossRefGoogle Scholar
  16. 16.
    Kawahara K, Kuraishi H, Zahringer U (1999) Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the alpha-4 subclass of proteobacteria. J Ind Microbiol Biotechnol 23:408–413PubMedCrossRefGoogle Scholar
  17. 17.
    Kertesz MA, Kawasaki A (2010) Hydrocarbon-degrading sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol. Springer, Berlin, pp 1693–1705CrossRefGoogle Scholar
  18. 18.
    Kim IS, Ryu JY, Hur HG, Gu MB, Kim SD, Shim JH (2004) Sphingomonas sp. strain SB5 degrades carbofuran to a new metabolite by hydrolysis at the furanyl ring. J Agric Food Chem 52:2309–2314PubMedCrossRefGoogle Scholar
  19. 19.
    Kim SJ, Kweon O, Cerniglia CE (2010) Degradation of polycyclic aromatic hydrocarbons by Mycobacterium strains. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol. Springer, Berlin, pp 1865–1879CrossRefGoogle Scholar
  20. 20.
    King RW (1988) Petroleum: its composition, analysis and processing. Occup Med 3:409–430PubMedGoogle Scholar
  21. 21.
    Liang F, Lu M, Keener TC, Liu Z, Khang SJ (2005) The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. J Environ Monit 7:983–988, Epub 2005 Aug 8PubMedCrossRefGoogle Scholar
  22. 22.
    Liu ZP, Wang BJ, Liu YH, Liu SJ (2005) Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 55:1229–1232PubMedCrossRefGoogle Scholar
  23. 23.
    Mackey AP, Hodgkinson M (1996) Assessment of the impact of naphthalene contamination on mangrove fauna using behavioral bioassays. Bull Environ Contam Toxicol 56:279–286PubMedCrossRefGoogle Scholar
  24. 24.
    McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176PubMedCrossRefGoogle Scholar
  25. 25.
    Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086PubMedGoogle Scholar
  26. 26.
    Östman CE, Colmsjö AL (1988) Retention characteristics of alkylated polycyclic aromatic hydrocarbons in normal phase liquid chromatography. Chromatographia 25:25–30CrossRefGoogle Scholar
  27. 27.
    Palleroni NJ, Pieper DH, Moore ERB (2010) Microbiology of hydrocarbon-degrading Pseudomonas. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol. Springer, Berlin, pp 1787–1798CrossRefGoogle Scholar
  28. 28.
    Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768, Epub 2002 Jan 30PubMedCrossRefGoogle Scholar
  29. 29.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  30. 30.
    Sawyer RF (1993) Trends in auto emissions and gasoline composition. Environ Health Perspect 101:5–12PubMedGoogle Scholar
  31. 31.
    Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004PubMedCrossRefGoogle Scholar
  32. 32.
    Seth-Smith H (2010) ‘Slick’ operation. Nat Rev Microbiol 8:538PubMedCrossRefGoogle Scholar
  33. 33.
    Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276PubMedCrossRefGoogle Scholar
  34. 34.
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedGoogle Scholar
  35. 35.
    Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487PubMedCrossRefGoogle Scholar
  36. 36.
    Staley JT (2010) Cycloclasticus: A genus of marine polycyclic aromatic hydrocarbon degrading bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, vol. Springer, Berlin, pp 1781–1786CrossRefGoogle Scholar
  37. 37.
    Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811, Epub 2008 Nov 11PubMedCrossRefGoogle Scholar
  38. 38.
    Story SP, Kline EL, Hughes TA, Riley MB, Hayasaka SS (2004) Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505. Arch Environ Contam Toxicol 47:168–176PubMedCrossRefGoogle Scholar
  39. 39.
    Stringfellow WT, Aitken MD (1995) Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61:357–362PubMedGoogle Scholar
  40. 40.
    Teira E, Lekunberri I, Gasol JM, Nieto-Cid M, Alvarez-Salgado XA, Figueiras FG (2007) Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills. Environ Microbiol 9:2551–2562PubMedCrossRefGoogle Scholar
  41. 41.
    Toren A, Orr E, Paitan Y, Ron EZ, Rosenberg E (2002) The active component of the bioemulsifier alasan from Acinetobacter radioresistens KA53 is an OmpA-like protein. J Bacteriol 184:165–170PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DW (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107PubMedCrossRefGoogle Scholar
  43. 43.
    Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T, Fujiwara N, Kobayashi K, Kosako Y, Hiraishi A (2001) Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292PubMedGoogle Scholar
  44. 44.
    Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266, Epub 2007 May 9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eugenio Notomista
    • 1
    • 2
    Email author
  • Francesca Pennacchio
    • 1
  • Valeria Cafaro
    • 1
  • Giovanni Smaldone
    • 1
  • Viviana Izzo
    • 1
    • 2
  • Luca Troncone
    • 1
  • Mario Varcamonti
    • 1
  • Alberto Di Donato
    • 1
    • 3
  1. 1.Dipartimento di Biologia Strutturale e FunzionaleUniversità di Napoli Federico IINaplesItaly
  2. 2.Facoltà di Scienze BiotecnologicheUniversità di Napoli Federico IINaplesItaly
  3. 3.CEINGE-Biotecnologie Avanzate S.c.ar.l.NaplesItaly

Personalised recommendations