Advertisement

Microbial Ecology

, Volume 61, Issue 3, pp 715–722 | Cite as

Effect of Relative Humidity on Deinococcus radiodurans’ Resistance to Prolonged Desiccation, Heat, Ionizing, Germicidal, and Environmentally Relevant UV Radiation

  • Anja Bauermeister
  • Ralf MoellerEmail author
  • Günther Reitz
  • Suzanne Sommer
  • Petra Rettberg
Notes and Short communications

Abstract

To test the effect of humidity on the radiation resistance of Deinococcus radiodurans, air-dried cells were irradiated with germicidal 254 nm UV, and simulated environmental UV or γ-radiation and survival was compared to cells in suspension. It was observed that desiccated cells exhibited higher levels of resistance than cells in suspension toward UV or γ-radiation as well as after 85°C heat shock. It was also shown that low relative humidity improves survival during long-term storage of desiccated D. radiodurans cells. It can be concluded that periods or environments in which cells exist in a dehydrated state are beneficial for D. radiodurans’ survival exposed to various other stresses.

Keywords

Desiccation Resistance Deinococcus Radiodurans Quartz Disc Nucleotide Excision Repair System Bipyrimidine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to André Parpart for his excellent technical assistance. We express our thanks to the three anonymous reviewers for their valuable comments.

References

  1. 1.
    Aldsworth TG, Sharman RL, Dodd CE (1999) Bacterial suicide through stress. Cellular and Molecular Life Sciences 56:378–383PubMedCrossRefGoogle Scholar
  2. 2.
    Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annual Review of Microbiology 51:203–224PubMedCrossRefGoogle Scholar
  3. 3.
    Bauermeister A, Bentchikou E, Moeller R, Rettberg P (2009) Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Archives of Microbiology 191:913–918PubMedCrossRefGoogle Scholar
  4. 4.
    Beblo K, Rabbow E, Rachel R, Huber H, Rettberg P (2009) Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation. Extremophiles 13:521–531PubMedCrossRefGoogle Scholar
  5. 5.
    Bentchikou E, Servant P, Coste G, Sommer S (2007) Additive effects of SbcCD and PolX deficiencies in the in vivo repair of DNA double-strand breaks in Deinococcus radiodurans. Journal of Bacteriology 189:4784–4790PubMedCrossRefGoogle Scholar
  6. 6.
    Billi D, Potts M (2002) Life and death of dried prokaryotes. Research in Microbiology 153:7–12PubMedCrossRefGoogle Scholar
  7. 7.
    Blasius M, Hübscher U, Sommer S (2008) Deinococcus radiodurans: what belongs to the survival kit? Critical Reviews in Biochemistry and Molecular Biology 43:221–238PubMedCrossRefGoogle Scholar
  8. 8.
    Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research 571:3–17PubMedCrossRefGoogle Scholar
  9. 9.
    Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nature Reviews Microbiology 3:882–892PubMedCrossRefGoogle Scholar
  10. 10.
    Crowe LM, Crowe JH (1992) Anhydrobiosis: a strategy for survival. Advances in Space Research 12:239–247PubMedCrossRefGoogle Scholar
  11. 11.
    Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nature Reviews Microbiology 7:237–245PubMedCrossRefGoogle Scholar
  12. 12.
    Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD et al (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028PubMedCrossRefGoogle Scholar
  13. 13.
    Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A et al (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biology 5:769–779CrossRefGoogle Scholar
  14. 14.
    De Groot A, Chapon V, Servant P, Christen R, Saux MF, Sommer S et al (2005) Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. International Journal of Systematic and Evolutionary Microbiology 55:2441–2446PubMedCrossRefGoogle Scholar
  15. 15.
    Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Advances in Space Research 12:4221–4229Google Scholar
  16. 16.
    Dose K, Bieger-Dose A, Ernst B, Feister U, Gómez-Silva B, Klein A et al (2001) Survival of microorganisms under the extreme conditions of the Atacama desert. Origins of Life and Evolution of the Biosphere 31:281–303CrossRefGoogle Scholar
  17. 17.
    Douki T, Cadet J (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochemical & Photobiological Sciences 2:433–436CrossRefGoogle Scholar
  18. 18.
    Englander J, Klein E, Brumfeld V, Sharma AK, Doherty AJ, Minsky A (2004) DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. Journal of Bacteriology 186:5973–5977PubMedCrossRefGoogle Scholar
  19. 19.
    Fredrickson JK, Li SW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM et al (2008) Protein oxidation: key to bacterial desiccation resistance? The ISME Journal 2:393–403PubMedCrossRefGoogle Scholar
  20. 20.
    Gerhardt P (1985) Diluents and biomass measurement. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. ASM, Washington, DC, pp 504–507Google Scholar
  21. 21.
    Ghosal D, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Venkateswaran A et al (2005) How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiology Reviews 29:361–375PubMedGoogle Scholar
  22. 22.
    Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. The Biochemical Journal 388:151–157PubMedCrossRefGoogle Scholar
  23. 23.
    Griffith J, Makhov A, Santiago-Lara L, Setlow P (1994) Electron microscopic studies of the interaction between a Bacillus subtilis alpha/beta-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA, and induces negative supercoiling. Proceedings of the National Academy of Sciences of the United States of America 91:8224–8228Google Scholar
  24. 24.
    Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine (3rd edition). Oxford University Press, Oxford, UKGoogle Scholar
  25. 25.
    Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P et al (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Systematic and Applied Microbiology 27:636–645PubMedCrossRefGoogle Scholar
  26. 26.
    Hoekstra FA (2005) Differential longevities in desiccated anhydrobiotic plant systems. Integrative and Comparative Biology 45:725–733CrossRefGoogle Scholar
  27. 27.
    Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science 6:431–438PubMedCrossRefGoogle Scholar
  28. 28.
    Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiology and Molecular Biology Reviews 74:121–156PubMedCrossRefGoogle Scholar
  29. 29.
    Kranner I, Birtic S (2005) A modulating role for antioxidants in desiccation tolerance. Integrative and Comparative Biology 45:734–740CrossRefGoogle Scholar
  30. 30.
    Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299:254–256PubMedCrossRefGoogle Scholar
  31. 31.
    Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV et al (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiology and Molecular Biology Reviews 65:44–79PubMedCrossRefGoogle Scholar
  32. 32.
    Markillie LM, Varnum SM, Hradecky P, Wong KK (1999) Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. Journal of Bacteriology 181:666–669PubMedGoogle Scholar
  33. 33.
    Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. Journal of Bacteriology 178:633–637PubMedGoogle Scholar
  34. 34.
    Moeller R, Horneck G, Facius R, Stackebrandt E (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiology Ecology 51:231–236PubMedCrossRefGoogle Scholar
  35. 35.
    Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ et al (2007) Role of DNA repair by non-homologous end joining (NHEJ) in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV and ionizing radiation. Journal of Bacteriology 189:3306–3311PubMedCrossRefGoogle Scholar
  36. 36.
    Moeller R, Setlow P, Reitz G, Nicholson WL (2009) Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Applied and Environmental Microbiology 75:5202–5208PubMedCrossRefGoogle Scholar
  37. 37.
    Moseley BEB, Evans DM (1983) Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. Journal of General Microbiology 129:2437–2445PubMedGoogle Scholar
  38. 38.
    Mrazek J (2002) New technology may reveal mechanisms of radiation resistance in Deinococcus radiodurans. Proceedings of the National Academy of Sciences of the United States of America 99:10943–10944PubMedCrossRefGoogle Scholar
  39. 39.
    Pogoda de la Vega U, Rettberg P, Reitz G (2007) Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans. Advances in Space Research 40:1672–1677CrossRefGoogle Scholar
  40. 40.
    Pogoda de la Vega U, Rettberg P, Douki T, Cadet J, Horneck G (2005) Sensitivity to polychromatic UV-radiation of strains of Deinococcus radiodurans differing in their DNA repair capacity. International Journal of Radiation Biology 81:601–611PubMedCrossRefGoogle Scholar
  41. 41.
    Potts M (1994) Desiccation tolerance of prokaryotes. Microbiological Reviews 58:755–805PubMedGoogle Scholar
  42. 42.
    Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology 34:319–328CrossRefGoogle Scholar
  43. 43.
    Potts M (2001) Desiccation tolerance: a simple process? Trends in Microbiology 9:553–559PubMedCrossRefGoogle Scholar
  44. 44.
    Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebrate Survival Journal 4:65–81Google Scholar
  45. 45.
    Setlow P (1992) I will survive: protecting and repairing spore DNA. Journal of Bacteriology 174:2737–2741PubMedGoogle Scholar
  46. 46.
    Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1:225–236CrossRefGoogle Scholar
  47. 47.
    Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055PubMedCrossRefGoogle Scholar
  48. 48.
    Smith MD, Masters CI, Moseley BEB (1991) Molecular biology of radiation-resistant bacteria. In: Herbert RA, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie & Son, Ltd, Glasgow, pp 258–280Google Scholar
  49. 49.
    Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN et al (2004) Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168:21–33PubMedCrossRefGoogle Scholar
  50. 50.
    Tanaka M, Narumi I, Funayama T, Kikuchi M, Watanabe H, Matsunaga T et al (2005) Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. Journal of Bacteriology 187:3693–3697PubMedCrossRefGoogle Scholar
  51. 51.
    Tian B, Xu Z, Sun Z, Lin J, Hua Y (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochimica et Biophysica Acta 1770:902–911PubMedGoogle Scholar
  52. 52.
    Wang P, Schellhorn HE (1995) Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Canadian Journal of Microbiology 41:170–176PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe M, Nakahara Y, Sakashita T, Kikawada T, Fujita A, Hamada N et al (2007) Physiological changes leading to anhydrobiosis improve radiation tolerance in Polypedilum vanderplanki larvae. Journal of Insect Physiology 53:573–579PubMedCrossRefGoogle Scholar
  54. 54.
    Yang Y, Itoh T, Yokobori S, Itahashi S, Shimada H, Satoh K et al (2009) Deinococcus aerius sp. nov., isolated from the high atmosphere. International Journal of Systematic and Evolutionary Microbiology 59:1862–1866PubMedCrossRefGoogle Scholar
  55. 55.
    Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M et al (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  56. 56.
    Zamenhof S (1960) Effects of heating dry bacteria and spores on their phenotype and genotype. Proceedings of the National Academy of Sciences of the United States of America 46:101–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anja Bauermeister
    • 1
  • Ralf Moeller
    • 1
    Email author
  • Günther Reitz
    • 1
  • Suzanne Sommer
    • 2
  • Petra Rettberg
    • 1
  1. 1.Institute of Aerospace Medicine, Radiation Biology Department, Research Group ‘Astrobiology’German Aerospace Center (DLR)Cologne (Koeln)Germany
  2. 2.CNRS UMR8621, CEA LRC 42V, Institut de Génétique et MicrobiologieUniv. Paris-Sud 11OrsayFrance

Personalised recommendations