Advertisement

Microbial Ecology

, Volume 61, Issue 3, pp 568–581 | Cite as

Hypolithic Cyanobacteria Supported Mainly by Fog in the Coastal Range of the Atacama Desert

  • Armando Azúa-Bustos
  • Carlos González-Silva
  • Rodrigo A. Mancilla
  • Loreto Salas
  • Benito Gómez-Silva
  • Christopher P. McKay
  • Rafael Vicuña
Environmental Microbiology

Abstract

The Atacama Desert is one of the driest places on Earth, with an arid core highly adverse to the development of hypolithic cyanobacteria. Previous work has shown that when rain levels fall below ~1 mm per year, colonization of suitable quartz stones falls to virtually zero. Here, we report that along the coast in these arid regions, complex associations of cyanobacteria, archaea, and heterotrophic bacteria inhabit the undersides of translucent quartz stones. Colonization rates in these areas, which receive virtually no rain but mainly fog, are significantly higher than those reported inland in the hyperarid zone at the same latitude. Here, hypolithic colonization rates can be up to 80%, with all quartz rocks over 20 g being colonized. This finding strongly suggests that hypolithic microbial communities thriving in the seaward face of the Coastal Range can survive with fog as the main regular source of moisture. A model is advanced where the development of the hypolithic communities under quartz stones relies on a positive feedback between fog availability and the higher thermal conductivity of the quartz rocks, which results in lower daytime temperatures at the quartz–soil interface microenvironment.

Keywords

Photosynthetic Photon Flux Density Soil Interface Cyanobacterial Community Quartz Rock Quartz Stone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Millennium Institute of Fundamental and Applied Biology, MIFAB (Chile). We also thank Alejandro Munizaga and Ximena Verges for the technical support with microscopy methods.

Author Disclosure Statement

No competing financial interests exist.

Supplementary material

248_2010_9784_Fig1_ESM.jpg (122 kb)
Supplemental Figure 1

In situ temperature profiles under quartz stones and opaque rocks. A period of 9 days during winter time of 2008 is shown. -■- quartz stones, -◊- dark opaque stones. (JPG 121 KB)

248_2010_9784_MOESM1_ESM.tif (109 kb)
High resolution image file (TIF 109 KB)

References

  1. 1.
    Agam N, Berliner PR (2006) Dew formation and water vapour adsorption in semi arid environments—a review. J Arid Environ 65:572–590CrossRefGoogle Scholar
  2. 2.
    Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695CrossRefGoogle Scholar
  3. 3.
    Bao H, Gu B (2004) Natural perchlorate has a unique oxygen isotope signature. Environ Sci Technol 38:5073–5077PubMedCrossRefGoogle Scholar
  4. 4.
    Cameron RE, Blank GB (1966) Desert algae: soil crusts and diaphanous substrata as algal habits. Jet Propulsion Laboratory, California Institute of Technology, Technical Report 32-971, pp 41Google Scholar
  5. 5.
    Cereceda P, Osses P, Larraín H, Farias M, Schemenauer RS (2002) Advective, orographic and radiation fog in the Tarapacá Region, Chile. Atmos Res 64:261–271CrossRefGoogle Scholar
  6. 6.
    Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414PubMedCrossRefGoogle Scholar
  7. 7.
    Davila AF, Gómez-Silva B, de los Rios A, Ascaso C, Olivares H, McKay CP, Wierzchos J (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:G01028CrossRefGoogle Scholar
  8. 8.
    Davis WL, de Pater I, McKay CP (2010) Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planet Space Sci 58:616–622CrossRefGoogle Scholar
  9. 9.
    De Long EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefGoogle Scholar
  10. 10.
    Dose K, Bieger-Dose A, Ernst B, Feister U, Gómez-Silva B, Klein A, Risi S, Stridde C (2001) Survival of microorganisms under the extreme conditions of the Atacama Desert. Orig Life Evol Biosph 31:287–303PubMedCrossRefGoogle Scholar
  11. 11.
    Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908PubMedCrossRefGoogle Scholar
  12. 12.
    Erickson GE (1981) Geology and origin of the Chilean nitrate deposits. U. S. Geological Survey Professional Paper No. 1188, Washington DC, p 12Google Scholar
  13. 13.
    Espejo R (2001) Climatological and microbiological characteristics of the Camanchaca phenomenon at Cerro Moreno, Antofagasta, Chile. Proceedings of the Second International Conference on Fog and Fog Collection, pp 463-466Google Scholar
  14. 14.
    Farías M, Cereceda P, Osses P, Nuñez R (2005) Spatial and temporal behavior of the stratocumulus cloud, fog producer in the coast of the Atacama desert (21° south lat., 70° west long.), during one month of winter and another of summer. Investig Geogr 56:43–61Google Scholar
  15. 15.
    Kaseke Farai K (2009) “Non-rainfall” atmospheric water in arid doil micro-hydrology and ecology. Master of Science Thesis, University of StellenboschGoogle Scholar
  16. 16.
    Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200CrossRefGoogle Scholar
  17. 17.
    Graf A, Kuttler W, Werner J (2008) Mulching as a means of exploiting dew for arid agriculture? Atmos Res 87:369–376CrossRefGoogle Scholar
  18. 18.
    Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  19. 19.
    Gultepe I, Pagowski M, Ried J (2007) A satellite-fog based detection scheme using screen air temperature. Weather forecast 22:444–456CrossRefGoogle Scholar
  20. 20.
    Gupta S, Agrawal SC (2006) Survival of blue-green and green algae under stress conditions. Folia Microbiol Praha 51:121–128PubMedCrossRefGoogle Scholar
  21. 21.
    Hartley A, Chong G, Houston J, Mather A (2005) 150 million years of climatic stability: evidence from the Atacama Desert, Northern Chile. J Geol Soc Lond 162:421–424CrossRefGoogle Scholar
  22. 22.
    Higo A, Suzuki T, Ikeuchi M, Ohmori M (2007) Dynamic transcriptional changes in response to rehydration in Anabaena sp. PCC 7120. Microbiology 153:3685–3694PubMedCrossRefGoogle Scholar
  23. 23.
    Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464CrossRefGoogle Scholar
  24. 24.
    Kappen L, Lange OL, Schulze ED, Evenari M, Buschbom V (1979) Ecophysiological investigations on lichens of the Negev Desert: IV. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168:85–105Google Scholar
  25. 25.
    Katra I, Lavee H, Sarah P (2008) The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena 72:49–55CrossRefGoogle Scholar
  26. 26.
    Kemper WD, Nicks AD, Corey AT (1994) Accumulation of water in soils under gravel and sand mulches. Soil Sci Soc Am J 58:56–63CrossRefGoogle Scholar
  27. 27.
    Kraus R, Trimborn P, Ziegler H (2001) Delta13C and deltaD values of Opuntia atacamensis depending on different environmental conditions in the Atacama Desert of Northern Chile. Isot Environ Health Stud 37:161–165CrossRefGoogle Scholar
  28. 28.
    Lalley JS, Viles HA (2006) Do vehicle track disturbances affect the productivity of soil-growing lichens in a fog desert? Funct Ecol 20:548–556CrossRefGoogle Scholar
  29. 29.
    Lange OL, Bertsch A (1965) Photosynthese der Wustenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften, 52:215–216. In: Hillel D (1982) Negev, Land, water and life in a desert environment. Praeger Publications, New YorkGoogle Scholar
  30. 30.
    Lange OL, Allen Green TG, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280Google Scholar
  31. 31.
    Larrain H, Velásquez F, Cereceda P, Espejo R, Pinto R, Osses P, Schemenauer RS (2002) Fog measurements at the site ‘Falda Verde’ North of Chañaral (Chile) compared with other North Chilean fog stations. Atmos Res 64:273–284CrossRefGoogle Scholar
  32. 32.
    Li XY (2002) Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J Hydrol 260:151–160CrossRefGoogle Scholar
  33. 33.
    Louw GN, Seely MK (1982) Ecology of desert organisms. Longman House, EssexGoogle Scholar
  34. 34.
    Malek E, McCurdy G, Giles G (1999) Dew contribution to the annual water balances in semi-arid desert valleys. J Arid Environ 42:71–80CrossRefGoogle Scholar
  35. 35.
    Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799PubMedGoogle Scholar
  36. 36.
    McKay CP, Friedmann EI, Gómez-Silva B, Cáceres-Villanueva L, Andersen DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Niño of 1997-1998. Astrobiology 3:393–406PubMedCrossRefGoogle Scholar
  37. 37.
    Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021PubMedCrossRefGoogle Scholar
  38. 38.
    Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  39. 39.
    Or D, Phutane S, Dechesne A (2007) Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J 6:298–305PubMedCrossRefGoogle Scholar
  40. 40.
    Osses P, Farías M, Nuñez R, Cereceda P, Larraín H (2005) Coastal fog, satellite imagery, and drinking water: student fieldwork in the Atacama Desert. Geocarto Int 20:69–74Google Scholar
  41. 41.
    Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts. Environ Microbiol 9:414–424PubMedCrossRefGoogle Scholar
  42. 42.
    Rech J, Quade J, Hart W (2003) Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochim Cosmochim Acta 67:575–586CrossRefGoogle Scholar
  43. 43.
    Reysenbach AL, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119PubMedGoogle Scholar
  44. 44.
    Rundel P, Dillon MO, Palma B, Mooney HA, Gulmon SL, Ehleringer JR (1990) The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 13:1–50Google Scholar
  45. 45.
    Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, Southern Mojave desert. Ecology 84:3222–3231CrossRefGoogle Scholar
  46. 46.
    Shaw E, Hill DR, Brittain N, Wright DJ, Täuber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69:5679–5684PubMedCrossRefGoogle Scholar
  47. 47.
    Smith M, Bowman J, Scott F, Line M (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184Google Scholar
  48. 48.
    Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88PubMedCrossRefGoogle Scholar
  49. 49.
    Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607PubMedCrossRefGoogle Scholar
  50. 50.
    Vogel S (1955) Niedere “Fensterpflanzen” in der sudafrikanischen wüste. Beitr Biol Pflanz 31:45–135Google Scholar
  51. 51.
    Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482PubMedCrossRefGoogle Scholar
  52. 52.
    Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398PubMedCrossRefGoogle Scholar
  53. 53.
    Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422PubMedCrossRefGoogle Scholar
  54. 54.
    Whitford WG (2002) Ecology of desert systems. Elsevier Science Ltd, San DiegoGoogle Scholar
  55. 55.
    Yoshimura H, Okamoto S, Tsumuraya Y, Ohmori M (2007) Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 14:13–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Armando Azúa-Bustos
    • 1
    • 4
  • Carlos González-Silva
    • 2
  • Rodrigo A. Mancilla
    • 1
  • Loreto Salas
    • 1
  • Benito Gómez-Silva
    • 5
  • Christopher P. McKay
    • 3
  • Rafael Vicuña
    • 1
    • 4
  1. 1.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de investigación del Medio Ambiente (CENIMA)Universidad Arturo PratIquiqueChile
  3. 3.NASA-Ames Research CenterMoffett FieldUSA
  4. 4.Millennium Institute of Fundamental an Applied Biology, MIFABSantiagoChile
  5. 5.Departamento Biomédico, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile

Personalised recommendations