Advertisement

Microbial Ecology

, Volume 61, Issue 3, pp 543–556 | Cite as

Bacterial Community Structure Along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams

  • Lydia H. Zeglin
  • Clifford N. Dahm
  • John E. Barrett
  • Michael N. Gooseff
  • Shannon K. Fitpatrick
  • Cristina D. Takacs-VesbachEmail author
Environmental Microbiology

Abstract

Microorganisms inhabiting stream sediments mediate biogeochemical processes of importance to both aquatic and terrestrial ecosystems. In deserts, the lateral margins of ephemeral stream channels (parafluvial sediments) are dried and rewetted, creating periodically wet conditions that typically enhance microbial activity. However, the influence of water content on microbial community composition and diversity in desert stream sediments is unclear. We sampled stream margins along gradients of wet to dry sediments, measuring geochemistry and bacterial 16S rRNA gene composition, at streams in both a cold (McMurdo Dry Valleys, Antarctica) and hot (Chihuahuan Desert, New Mexico, USA) desert. Across the gradients, sediment water content spanned a wide range (1.6–37.9% w/w), and conductivity was highly variable (12.3–1,380 μS cm−2). Bacterial diversity (at 97% sequence similarity) was high and variable, but did not differ significantly between the hot and cold desert and was not correlated with sediment water content. Instead, conductivity was most strongly related to diversity. Water content was strongly related to bacterial 16S rRNA gene community composition, though samples were distributed in wet and dry clusters rather than as assemblages shifting along a gradient. Phylogenetic analyses showed that many taxa from wet sediments at the hot and cold desert site were related to, respectively, halotolerant Gammaproteobacteria, and one family within the Sphingobacteriales (Bacteroidetes), while dry sediments at both sites contained a high proportion of taxa related to the Acidobacteria. These results suggest that bacterial diversity and composition in desert stream sediments is more strongly affected by hydrology and conductivity than temperature.

Keywords

Clone Library Stream Sediment Onyx Bacterial Community Composition Chihuahuan Desert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We offer many thanks to the personnel of the Long Term Ecological Research (LTER) programs of both the Sevilleta and McMurdo Dry Valleys. We also thank Raytheon Polar Services and Petroleum Helicopters, Inc. for logistical support in Antarctica. Field team members included D. Bradley Bate, Mike Bobb, Chelsea Crenshaw, Kenneth Hill, and Melissa Northcott. Laboratory team members included Nathan Daves-Brody, Kendra Mitchell, and Kris Mossberg. This work was funded by NSF OPP-0338267 to CTV, MNG, and JEB; NSF Freshwater Sciences Interdisciplinary Doctoral Program IGERT (DGE-9972810) to CND; a Sevilleta LTER (DEB-0620482) graduate student grant; and an NSF Graduate Research Fellowship to LHZ.

References

  1. 1.
    Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056CrossRefGoogle Scholar
  2. 2.
    Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548PubMedCrossRefGoogle Scholar
  3. 3.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  4. 4.
    Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382CrossRefGoogle Scholar
  5. 5.
    Bardgett RD, Anderson JM, Behan-Pelletier V, Brussaard L, Coleman DC, Ettema C, Moldenke A, Schimel JP, Wall DH (2001) The influence of soil biodiversity on hydrological pathways and the transfer of materials between terrestrial and aquatic ecosystems. Ecosystems 4:421–429CrossRefGoogle Scholar
  6. 6.
    Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116PubMedCrossRefGoogle Scholar
  7. 7.
    Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedGoogle Scholar
  8. 8.
    Barrett JE, Gooseff MN, Takacs-Vesbach C (2009) Spatial variation in soil active-layer geochemistry across hydrologic margins in polar desert ecosystems. Hydrol Earth Syst Sci Discussion 6:3725–3751CrossRefGoogle Scholar
  9. 9.
    Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008) Persistent effects of a discrete warming event on a polar desert ecosystem. Glob Chang Biol 14:2249–2261CrossRefGoogle Scholar
  10. 10.
    Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67:799–807PubMedCrossRefGoogle Scholar
  11. 11.
    Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307CrossRefGoogle Scholar
  12. 12.
    Benlloch S, Lopez-Lopez A, Casamayor EO, Ovreas L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedros-Alio C, Rodriguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  13. 13.
    Bernhard AE, Donn T, Giblin AE, Stahl DA (2005) Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol 7:1289–1297PubMedCrossRefGoogle Scholar
  14. 14.
    Bobb M (2005) Spatial patterns of bacterial diversity in cold desert riparian zones. M.S. Thesis. Department of Biology, University of New Mexico, Albuquerque, NM, USAGoogle Scholar
  15. 15.
    Brettar I, Christen R, Hofle MG (2006) Rheinheimera perlucida sp nov., a marine bacterium of the Gammaproteobacteria isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 56:2177–2183PubMedCrossRefGoogle Scholar
  16. 16.
    Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690PubMedCrossRefGoogle Scholar
  17. 17.
    Demergasso C, Escudero L, Casamayor EO, Chong G, Balague V, Pedros-Alio C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504PubMedCrossRefGoogle Scholar
  18. 18.
    DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399PubMedCrossRefGoogle Scholar
  19. 19.
    Dillon JG, McMath LM, Trout AL (2009) Seasonal changes in bacterial diversity in the Salton Sea. Hydrobiologia 632:49–64CrossRefGoogle Scholar
  20. 20.
    Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res Atmos 107:4772CrossRefGoogle Scholar
  21. 21.
    Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520PubMedCrossRefGoogle Scholar
  22. 22.
    Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125PubMedCrossRefGoogle Scholar
  23. 23.
    Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908PubMedCrossRefGoogle Scholar
  24. 24.
    Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717PubMedCrossRefGoogle Scholar
  25. 25.
    Esposito RMM, Horn SL, McKnight DM, Cox MJ, Grant MC, Spaulding SA, Doran PT, Cozzetto KD (2006) Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett 33:L07406CrossRefGoogle Scholar
  26. 26.
    Feris KP, Ramsey PW, Frazar C, Rillig M, Moore JN, Gannon JE, Holben WE (2004) Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl Environ Microbiol 70:2323–2331PubMedCrossRefGoogle Scholar
  27. 27.
    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631PubMedCrossRefGoogle Scholar
  28. 28.
    Fritsen CH, Grue AM, Priscu JC (2000) Distribution of organic carbon and nitrogen in surface soils in the McMurdo Dry Valleys, Antarctica. Polar Biol 23:121–128CrossRefGoogle Scholar
  29. 29.
    Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264Google Scholar
  30. 30.
    Gooseff MN, McKnight DM, Doran PT, Lyons WB (2007) Trends in discharge and flow season timing of the Onyx River, Wright Valley, Antarctica since 1969. US Geological Survey and The National Academies, Short Research Paper USGS: OF-2007-1047Google Scholar
  31. 31.
    Gosz JR, Moore DI, Shore GA, Grover HD, Rison W, Rison C (1995) Lightning estimates of precipitation location and quantity on the Sevilleta LTER, New Mexico. Ecol Appl 5:1141–1150CrossRefGoogle Scholar
  32. 32.
    Gregorich EG, Hopkins DW, Elberling B, Sparrow AD, Novis P, Greenfield LG, Rochette P (2006) Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley. Soil Biol Biochem 38:3120–3129CrossRefGoogle Scholar
  33. 33.
    Heffernan JB, Sponseller RA (2004) Nutrient mobilization and processing in Sonoran desert riparian soils following artificial re-wetting. Biogeochemistry 70:117–134CrossRefGoogle Scholar
  34. 34.
    Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038CrossRefGoogle Scholar
  35. 35.
    Hogan JF, Phillips FM, Mills SK, Hendrickx JMH, Ruiz J, Chesley JT, Asmerom Y (2007) Geologic origins of salinization in a semi-arid river: the role of sedimentary basin brines. Geology 35:1063–1066CrossRefGoogle Scholar
  36. 36.
    Holmes RM, Fisher SG, Grimm NB (1994) Parafluvial nitrogen dynamics in a desert stream ecosystem. J North Am Benthol Soc 13:468–478CrossRefGoogle Scholar
  37. 37.
    Holmes RM, Jones JBJ, Fisher SG, Grimm NB (1996) Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33:125–146CrossRefGoogle Scholar
  38. 38.
    Hopkins DW, Sparrow AD, Novis PM, Grogorich EG, Elberling B, Greenfield LG (2006) Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc R Soc B 273:2687–2695PubMedCrossRefGoogle Scholar
  39. 39.
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  40. 40.
    Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3:1–8CrossRefGoogle Scholar
  41. 41.
    Hullar MAJ, Kaplan LA, Stahl DA (2006) Recurring seasonal dynamics of microbial communities in stream habitats. Appl Environ Microbiol 72:713–722PubMedCrossRefGoogle Scholar
  42. 42.
    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728PubMedCrossRefGoogle Scholar
  43. 43.
    Jones JB, Fisher SG, Grimm NB (1995) Nitrification in the hyporheic zone of a desert stream ecosystem. J North Am Benthol Soc 14:249–258CrossRefGoogle Scholar
  44. 44.
    Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment—a biogeographical synthesis. Arct Alpine Res 25:308–315CrossRefGoogle Scholar
  45. 45.
    Knapp CW, Dodds WK, Wilson KC, O'Brien JM, Graham DW (2009) Spatial heterogeneity of denitrification genes in a highly homogeneous urban stream. Environ Sci Technol 43:4273–4279PubMedCrossRefGoogle Scholar
  46. 46.
    Lane DJ (1991) 16S/12S rRNA sequencing. In: Stackebrant E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175Google Scholar
  47. 47.
    Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform 7:371–385CrossRefGoogle Scholar
  48. 48.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  49. 49.
    Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637PubMedGoogle Scholar
  50. 50.
    McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA, Tate CM (1999) Dry valley streams in Antarctica: ecosystems waiting for water. Bioscience 49:985–995CrossRefGoogle Scholar
  51. 51.
    Mitchell KR, Takacs-Vesbach CD (2008) A comparison of methods for total community DNA preservation and extraction from various thermal environments. J Ind Microbiol Biotechnol 35:1139–1147PubMedCrossRefGoogle Scholar
  52. 52.
    Molles MC Jr, Dahm CN, Crocker MT (1992) Climatic variability and streams and rivers in semi-arid regions. In: Roberts RD, Bothwell ML (eds) Aquatic ecosystems in semi-arid regions: implications for resource management. The Institute, Saskatoon, pp 197–201Google Scholar
  53. 53.
    Moorhead DL, Barrett JE, Virginia RA, Wall DH, Proazinska D (2003) Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biol 26:567–576CrossRefGoogle Scholar
  54. 54.
    Newell DL, Crossey LJ, Karlstrom KE, Fischer TP, Hilton DR (2005) Continental-scale links between the mantle and groundwater systems of the western United States: evidence from travertine springs and regional He isotope data. GSA Today 15:4–10CrossRefGoogle Scholar
  55. 55.
    Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10:1713–1724PubMedCrossRefGoogle Scholar
  56. 56.
    Noguez AM, Arita HT, Escalante AE, Forney LJ, Garcia-Oliva F, Souza V (2005) Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob Ecol Biogeogr 14:241–248CrossRefGoogle Scholar
  57. 57.
    Northcott ML, Gooseff MN, Barrett JE, Zeglin LH, Takacs-Vesbach CD, Humphrey J (2009) Hydrologic characteristic of lake- and stream-side riparian wetted margins in the McMurdo Dry Valleys, Antarctica. Hydrol Process 23:1255–1267CrossRefGoogle Scholar
  58. 58.
    Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  59. 59.
    Papke RT, Ward DM (2004) The importance of physical isolation to microbial diversification. FEMS Microbiol Ecol 48:293–303PubMedCrossRefGoogle Scholar
  60. 60.
    Patterson BD (1999) Contingency and determinism in mammalian biogeography: the role of history. J Mammal 80:345–360CrossRefGoogle Scholar
  61. 61.
    Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2010) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci U S A 107:1254–1254Google Scholar
  62. 62.
    Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts. Environ Microbiol 9:414–424PubMedCrossRefGoogle Scholar
  63. 63.
    Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  64. 64.
    Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) Essay—the role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392PubMedCrossRefGoogle Scholar
  65. 65.
    Rees GN, Watson GO, Baldwin DS, Mitchell AM (2006) Variability in sediment microbial communities in a semipermanent stream: impact of drought. J North Am Benthol Soc 25:370–378CrossRefGoogle Scholar
  66. 66.
    Romani AM, Fischer H, Mille-Lindbloom C, Travnik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569PubMedCrossRefGoogle Scholar
  67. 67.
    Rutz BA, Kieft TL (2004) Phylogenetic characterization of dwarf archaea and bacteria from a semiarid soil. Soil Biol Biochem 36:825–833CrossRefGoogle Scholar
  68. 68.
    Schade JD, Marti E, Welter JR, Fisher SG, Grimm NB (2002) Sources of nitrogen to the riparian zone of a desert stream: implications for riparian vegetation and nitrogen retention. Ecosystems 5:68–79CrossRefGoogle Scholar
  69. 69.
    Schloss PD, Handelsman J (2005) Introducting DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  70. 70.
    Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:221–220Google Scholar
  71. 71.
    Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421PubMedCrossRefGoogle Scholar
  72. 72.
    Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodriguez-Martinez JM, Soberon X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci U S A 103:6565–6570PubMedCrossRefGoogle Scholar
  73. 73.
    Swofford DL (2003) Phylogenetic analysis using parsimony. Version 4. Sinauer Associates, SunderlandGoogle Scholar
  74. 74.
    Takacs-Vesbach C, Zeglin LH, Barrett JE, Gooseff MN, Priscu JC (2010) Factors promoting microbial diversity in the McMurdo Dry Valleys, Antarctica. In: Doran PT, Lyons WB, McKnight DM (eds) Life in antarctic deserts and other cold dry environments. Cambridge University Press, CambridgeGoogle Scholar
  75. 75.
    Treonis AM, Wall DH, Virginia RA (1999) Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 2:482–492CrossRefGoogle Scholar
  76. 76.
    Vincent WF, Howard-Williams C (1986) Antarctic stream ecosystems: physiological ecology of a blue-green algal epilithon. Freshw Biol 16:219–233CrossRefGoogle Scholar
  77. 77.
    Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666PubMedCrossRefGoogle Scholar
  78. 78.
    Whitaker RJ (2006) Allopatric origins of microbial species. Philos Trans R Soc Lond B Biol Sci 361:1975–1984PubMedCrossRefGoogle Scholar
  79. 79.
    Xie CH, Yokota A (2006) Reclassification of Flavobacterium ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp nov., isolated from soil. Int J Syst Evol Microbiol 56:1117–1121PubMedCrossRefGoogle Scholar
  80. 80.
    Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency. Environ Microbiol 10:2223–2235PubMedCrossRefGoogle Scholar
  81. 81.
    Yoon JH, Kang SJ, Lee CH, Oh TK (2005) Marinicola seohaensis gen. nov., sp nov., isolated from sea water of the Yellow Sea, Korea. Int J Syst Evol Microbiol 55:859–863PubMedCrossRefGoogle Scholar
  82. 82.
    Yoon MH, Im WT (2007) Flavisolibacter ginsengiterrae gen. nov., sp nov and Flavisolibacter ginsengisoli sp nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 57:1834–1839PubMedCrossRefGoogle Scholar
  83. 83.
    Zeglin LH (2008) Microbial diversity and function at aquatic-terrestrial interfaces in desert ecosystems. Ph.D. Dissertation. Department of Biology, University of New Mexico, Albuquerque, NM, USAGoogle Scholar
  84. 84.
    Zeglin LH, Sinsabaugh RL, Barrett JE, Gooseff MN, Takacs-Vesbach CD (2009) Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology and geochemistry in a cold desert ecosystem. Ecosystems 12:562–573CrossRefGoogle Scholar
  85. 85.
    Zhou J, Xia B, Treves DS, Wu L-Y, Marsh TL, O'Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lydia H. Zeglin
    • 1
    • 4
  • Clifford N. Dahm
    • 1
  • John E. Barrett
    • 2
  • Michael N. Gooseff
    • 3
  • Shannon K. Fitpatrick
    • 1
  • Cristina D. Takacs-Vesbach
    • 1
    Email author
  1. 1.Department of Biology, MSC03 2020University of New MexicoAlbuquerqueUSA
  2. 2.Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  3. 3.Department of Civil and Environmental EngineeringPennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of Crop and Soil ScienceOregon State UniversityCorvallisUSA

Personalised recommendations