Microbial Ecology

, Volume 61, Issue 3, pp 518–528 | Cite as

Insights into the Phylogeny and Metabolic Potential of a Primary Tropical Peat Swamp Forest Microbial Community by Metagenomic Analysis

  • Pattanop Kanokratana
  • Tanaporn Uengwetwanit
  • Ukrit Rattanachomsri
  • Benjarat Bunterngsook
  • Thidarat Nimchua
  • Sithichoke Tangphatsornruang
  • Vethachai Plengvidhya
  • Verawat Champreda
  • Lily Eurwilaichitr
Environmental Microbiology

Abstract

A primary tropical peat swamp forest is a unique ecosystem characterized by long-term accumulation of plant biomass under high humidity and acidic water-logged conditions, and is regarded as an important terrestrial carbon sink in the biosphere. In this study, the microbial community in the surface peat layer in Pru Toh Daeng, a primary tropical peat swamp forest, was studied for its phylogenetic diversity and metabolic potential using direct shotgun pyrosequencing of environmental DNA, together with analysis of 16S rRNA gene library and key metabolic genes. The community was dominated by aerobic microbes together with a significant number of facultative and anaerobic microbial taxa. Acidobacteria and diverse Proteobacteria (mainly Alphaproteobacteria) constituted the major phylogenetic groups, with minor representation of archaea and eukaryotic microbes. Based on comparative pyrosequencing dataset analysis, the microbial community showed high metabolic versatility of plant polysaccharide decomposition. A variety of glycosyl hydrolases targeting lignocellulosic and starch-based polysaccharides from diverse bacterial phyla were annotated, originating mostly from Proteobacteria, and Acidobacteria together with Firmicutes, Bacteroidetes, Chlamydiae/Verrucomicrobia, and Actinobacteria, suggesting the key role of these microbes in plant biomass degradation. Pyrosequencing dataset annotation and direct mcrA gene analysis indicated the presence of methanogenic archaea clustering in the order Methanomicrobiales, suggesting the potential on partial carbon flux from biomass degradation through methanogenesis. The insights on the peat swamp microbial assemblage thus provide a valuable approach for further study on biogeochemical processes in this unique ecosystem.

Supplementary material

248_2010_9766_MOESM1_ESM.pdf (35 kb)
Figure S1Neighbor-joining tree showing the phylogeny of bacterial 16S rRNA gene sequences from the Pru Toh Daeng peat swamp forest. Sequences were aligned (1,501 nt) with Clustal X and distances were calculated with the maximum likelihood model. Sequences named “PW” are those from this study. Bootstrap values (1,000 replicates) above 50% are shown. Bar, 10% sequence divergence. Aquifex pyrophillus was used as outgroup taxa. Acidobacteria sequences were grouped for simplicity. The potential new taxa are marked with an asterisk. (PDF 35 kb)

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. 2.
    Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedGoogle Scholar
  3. 3.
    Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116PubMedCrossRefGoogle Scholar
  4. 4.
    Basiliko N, Yavitt JB, Dees PM, Merkel SM (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York state. Geomicrobiol J 20:563–577CrossRefGoogle Scholar
  5. 5.
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–30PubMedCrossRefGoogle Scholar
  6. 6.
    Béquin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58CrossRefGoogle Scholar
  7. 7.
    Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev 10:111–124CrossRefGoogle Scholar
  8. 8.
    Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidophilic methanogen from an acidic peat bog. Nature 442:192–194PubMedCrossRefGoogle Scholar
  9. 9.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–238PubMedCrossRefGoogle Scholar
  10. 10.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  11. 11.
    Dedysh SN (2002) Methanotrophic bacteria of acidic Sphagnun peat bogs. Microbiology 71:638–650CrossRefGoogle Scholar
  12. 12.
    Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117PubMedCrossRefGoogle Scholar
  13. 13.
    DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards RA, Rodriguez-Bitro B, Wegley L, Haynes M, Brietbart M, Peterson DM, Saar MO, Alexander S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57PubMedCrossRefGoogle Scholar
  15. 15.
    Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) BERGEY’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166Google Scholar
  16. 16.
    Garsia J-L, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205–226CrossRefGoogle Scholar
  17. 17.
    Hirano T, Jauhiainen J, Inoue N, Takahashi H (2008) Controls of the carbon balances of tropical peatlands. Ecosystems 12:873–887CrossRefGoogle Scholar
  18. 18.
    Horn MA, Matthies C, Küsel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83PubMedCrossRefGoogle Scholar
  19. 19.
    Hugenholtz P, Tyson TW (2008) Microbiology: metagenomics. Nature 455:481–483PubMedCrossRefGoogle Scholar
  20. 20.
    Huson D, Auch A, Qi J, Schuster S (2007) MEGAN analysis of metagenome data. Genome Res 17:377–386PubMedCrossRefGoogle Scholar
  21. 21.
    Jackson CR, Liew KC, Yule CM (2008) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412PubMedCrossRefGoogle Scholar
  22. 22.
    Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of bacteria and archaea in the Bor Khlueng Hot Spring in Thailand. J Basic Microbiol 44:430–444PubMedCrossRefGoogle Scholar
  23. 23.
    Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106PubMedCrossRefGoogle Scholar
  24. 24.
    Kotsyurbenko OR, Chin KJ, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in acidic West Siberian peat bogs. Environ Microbiol 6:1159–1173PubMedCrossRefGoogle Scholar
  25. 25.
    Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306PubMedCrossRefGoogle Scholar
  26. 26.
    Lu Y, Dirk R, Werner L, Ralf C (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360PubMedCrossRefGoogle Scholar
  27. 27.
    Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA gene in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530PubMedGoogle Scholar
  28. 28.
    Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils. Regional and global perspectives. Chemosphere 27:999–1023CrossRefGoogle Scholar
  29. 29.
    Martín HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2005) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269CrossRefGoogle Scholar
  30. 30.
    Melling L, Hatano R, Goh KJ (2005) Methane fluxes from three ecosystems in tropical peatlands of Sarawak, Malaysia. Soil Biol Biochem 37:1445–1453CrossRefGoogle Scholar
  31. 31.
    Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The Metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386CrossRefGoogle Scholar
  32. 32.
    Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS (2009) SOrt-ITEMS: sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 25:1722–1730PubMedCrossRefGoogle Scholar
  33. 33.
    Nercessian D, Upton M, Lloyd D, Edwards C (1999) Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol Lett 173:425–429CrossRefGoogle Scholar
  34. 34.
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702PubMedCrossRefGoogle Scholar
  35. 35.
    Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:132–152CrossRefGoogle Scholar
  36. 36.
    Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C (2002) First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol 4:603–611PubMedCrossRefGoogle Scholar
  37. 37.
    Sait M, Davis KER, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857PubMedCrossRefGoogle Scholar
  38. 38.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  39. 39.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  40. 40.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA gene sequence analysis in the present definition in bacteriology. Inter J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  41. 41.
    Sundh I, Nilsson M, Borga P (1997) Variation in microbial community structure in two boreal peatlands as determined by analysis of phospholipid fatty acid profiles. Appl Environ Microbiol 63:1476–1482PubMedGoogle Scholar
  42. 42.
    Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28PubMedCrossRefGoogle Scholar
  43. 43.
    Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedCrossRefGoogle Scholar
  44. 44.
    Uz I, Chauhan A, Ogram AV (2007) Cellulolytic, fermentative and methanogenic guilds in benthic periphyton mats from the Florida Everglades. FEMS Microbiol Ecol 61:337–347PubMedCrossRefGoogle Scholar
  45. 45.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  46. 46.
    von Mering C, Hugenholtz P, Tringe SG, Doerks T, Jensen LJ, Ward N, Bork P (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315:1126–1130CrossRefGoogle Scholar
  47. 47.
    Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056PubMedCrossRefGoogle Scholar
  48. 48.
    Whitmore TC (1984) Tropical rainforests of the far East. Clarendon, Oxford, UKGoogle Scholar
  49. 49.
    Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pattanop Kanokratana
    • 1
  • Tanaporn Uengwetwanit
    • 1
  • Ukrit Rattanachomsri
    • 1
  • Benjarat Bunterngsook
    • 1
  • Thidarat Nimchua
    • 1
  • Sithichoke Tangphatsornruang
    • 1
  • Vethachai Plengvidhya
    • 1
  • Verawat Champreda
    • 1
  • Lily Eurwilaichitr
    • 1
  1. 1.National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyPathumthaniThailand

Personalised recommendations