Microbial Ecology

, Volume 61, Issue 2, pp 277–285 | Cite as

The Genetic Diversity of Culturable Nitrogen-Fixing Bacteria in the Rhizosphere of Wheat

  • Anastasia Venieraki
  • Maria Dimou
  • Panagiotis Pergalis
  • Io Kefalogianni
  • Iordanis Chatzipavlidis
  • Panagiotis KatinakisEmail author
Environmental Microbiology


A total of 17 culturable nitrogen-fixing bacterial strains associated with the roots of wheat growing in different regions of Greece were isolated and characterized for plant-growth-promoting traits such as auxin production and phosphate solubilization. The phylogenetic position of the isolates was first assessed by the analysis of the PCR-amplified 16S rRNA gene. The comparative sequence analysis and phylogenetic analysis based on 16S rRNA gene sequences show that the isolates recovered in this study are grouped with Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. The diazotrophic nature of all isolates was confirmed by amplification of partial nifH gene sequences. The phylogenetic tree based on nifH gene sequences is consistent with 16S rRNA gene phylogeny. The isolates belonging to Azospirillum species were further characterized by examining the partial dnaK gene phylogenetic tree. Furthermore, it was demonstrated that the ipdC gene was present in all Azospirillum isolates, suggesting that auxin is mainly synthesized via the indole-3-pyruvate pathway. Although members of P. stutzeri and A. zeae are known diazotrophic bacteria, to the best of our knowledge, this is the first report of isolation and characterization of strains belonging to these bacterial genera associated with wheat.


Azospirillum Gluconic Acid Phosphate Solubilization nifH Gene Acetylene Reduction Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andrade G, Esteban E, Velasco L, Lorite MJ, Bedmar EJ (1997) Isolation and identification of N2-fixing microorganisms from rhizosphere of Capparis spinosa (L). Plant Soil 197:19–23CrossRefGoogle Scholar
  2. 2.
    Anonymous (2003) World wheat, corn and rice production, food and agricultural organization of the United Nations.
  3. 3.
    Antonopoulos DA, Russel WM, White BA (2003) Phylogenetic reconstruction of Gram-positive organisms based on comparative sequence analysis of molecular chaperones from the ruminal microorganism Ruminococcus flavefaciens FD-1. FEMS Microbiol Lett 227:1–7CrossRefPubMedGoogle Scholar
  4. 4.
    Baldani JI, Caruso VLD, Baldani SR, Goi J, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  5. 5.
    Baldani VLD, de Alvarez BMA, Baldani JI, Dobereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46CrossRefGoogle Scholar
  6. 6.
    Baldani VLD, Dobereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439CrossRefGoogle Scholar
  7. 7.
    Barraquio WL, Daroy MLG, Tirol AC, Ladha JK, Watanabe I (1986) Laboratory acetylene reduction assay for relative measurement of N2-fixing activities associated with field-grown wetland rice plants. Plant Soil 90:359–372CrossRefGoogle Scholar
  8. 8.
    Barraquio WL, Dumont A, Knowles R (1988) Enumeration of free-living aerobic N2-fixing and H2-oxidizing bacteria by using a heterotrophic semisolid medium and most-probable-number technique. Appl Environ Microbiol 54:1313–1317PubMedGoogle Scholar
  9. 9.
    Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121CrossRefGoogle Scholar
  10. 10.
    Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia MP (2010) Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60:128–133CrossRefPubMedGoogle Scholar
  11. 11.
    Berge O, Heulin T, Achouak W, Richard C, Bally R, Balandreau J (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203CrossRefGoogle Scholar
  12. 12.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  13. 13.
    Chun J, Lee H-K, Jung Y, Kim M, Kim S, Kim BK, Lim Y-M (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  14. 14.
    Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281CrossRefGoogle Scholar
  15. 15.
    De Oliveira PR, Boddey LH, James EK, Sprent JI, Boddey RM (2002) Adsorption and anchoring of Azospirillum strains to roots of wheat seedlings. Plant Soil 246:151–166CrossRefGoogle Scholar
  16. 16.
    Desnoues N, Lin M, Guo X, Carreno-Lopez R, Elmerih C (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262CrossRefPubMedGoogle Scholar
  17. 17.
    Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant-growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  18. 18.
    Fernado L, Roesch W, Dorr de Quandro P, Camargo FAO, Triplett EW (2007) Screening of diazotrophic bacteria Azospirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 23:1377–1383CrossRefGoogle Scholar
  19. 19.
    Garvin S, Lindemann WC (1986) Isolation, characterization, and inoculation of N2-fixing bacteria from dicotyledonous plants. Can J Microbiol 32:912–916CrossRefGoogle Scholar
  20. 20.
    Gauthier F, Neufeld JD, Driscoll BT, Archibald FS (2000) Coliform bacteria and nitrogen fixation in pulp and paper mill effluent treatment systems. Appl Environ Microbiol 66:5155–5160CrossRefPubMedGoogle Scholar
  21. 21.
    Glickmann E, Dessaux Y (1995) A critical evaluation of the specificity of Salkowski reagent for indole compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796PubMedGoogle Scholar
  22. 22.
    Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microb Interact 11:156–162CrossRefGoogle Scholar
  23. 23.
    Han SO, New PB (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36:193–201CrossRefPubMedGoogle Scholar
  24. 24.
    Hartman A, Singh M, Klingmuler W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can J Microbiol 29:916–923CrossRefGoogle Scholar
  25. 25.
    Hatayama K, Kawai S, Shoun H, Ueda Y, Nakamura (2005) Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 55:1539–1544CrossRefPubMedGoogle Scholar
  26. 26.
    Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  27. 27.
    Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N2 fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:25–42Google Scholar
  28. 28.
    Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat is provided by Klebsiella pneumoniae 342. Mol Plant Microb Interact 17:1078–1085CrossRefGoogle Scholar
  29. 29.
    Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plants. Microb Ecol 58:179–188CrossRefPubMedGoogle Scholar
  30. 30.
    Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50CrossRefPubMedGoogle Scholar
  31. 31.
    Kefalogianni I, Flouri F, Balis C (1995) Occurrence, isolation and identification of Azospirillum strains in Greece. NATO ASI series G ecological sciences. Azospirillum and related microorganisms: genetics-physiology-ecology, vol 37. Springer, Berlin, pp 461–466Google Scholar
  32. 32.
    Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244CrossRefGoogle Scholar
  33. 33.
    Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457CrossRefGoogle Scholar
  34. 34.
    Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  35. 35.
    Kim C, Kecskes ML, Deaker RJ, Gilchrst K, New PB, Kennedy IB, Kim S, Sa T (2005) Wheat root and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can J Microbiol 51:948–956CrossRefPubMedGoogle Scholar
  36. 36.
    Kleeberger A, Castorph H, Klinmuller W (1983) The rhizosphere microflora of wheat and barley with special reference to gram-negative bacteria. Arch Microbiol 136:306–311CrossRefGoogle Scholar
  37. 37.
    Krotzky A, Werner D (1987) Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147:48–57CrossRefGoogle Scholar
  38. 38.
    Kulakov LA, McAlister OKL, Larkin MJ, O’Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555CrossRefPubMedGoogle Scholar
  39. 39.
    Kumar V, Naruala N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum. Biol Fertil Soil 27:301–305CrossRefGoogle Scholar
  40. 40.
    Kundu BS, Batra R, Kharb P, Tauro P (1986) Dinitrogen fixation in wheat and characterization of associated diazotrophs. Proc Indian Acad Sci (Plant Sci) 96:9–15Google Scholar
  41. 41.
    Lund PA (2009) Multiple chaperonin in bacteria—why so many? FEMS Microbiol Rev 33:785–800CrossRefPubMedGoogle Scholar
  42. 42.
    Mandira M, Srivastava S (2008) An ipdC knock-out of Azospirillum brasilense strain SM and its implication on indole-3-acetic acid biosynthesis and plant growth promotion. Ant van Leeuwenh 93:425–433CrossRefGoogle Scholar
  43. 43.
    Mehnaz A, Weselowski B, Lazarovits G (2007) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from rhizosphere of Zea mays. Int J Syst Evol Microbiol 57:2805–2809CrossRefPubMedGoogle Scholar
  44. 44.
    Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moenne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR-detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soil 43:136–170CrossRefGoogle Scholar
  45. 45.
    Neer PB, Kennedy IR (1989) Regional distribution and pH sensitivity of Azospirillum associated with wheat roots in Eastern Australia. Microb Ecol 17:299–309CrossRefGoogle Scholar
  46. 46.
    Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133CrossRefPubMedGoogle Scholar
  47. 47.
    Poly F, Lucile LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103CrossRefPubMedGoogle Scholar
  48. 48.
    Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:1–11CrossRefGoogle Scholar
  49. 49.
    Puende M-E, Bashan Y (1994) The desert epiphyte harbours the nitrogen-fixing bacterium Pseudomonas stutzeri. Can J Bot 72:406–408CrossRefGoogle Scholar
  50. 50.
    Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by plant growth-promoting bacterium Azospirillum spp. Naturwissensch 91:552–555CrossRefGoogle Scholar
  51. 51.
    Rodriguez-Caceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44:990–991Google Scholar
  52. 52.
    Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–27Google Scholar
  53. 53.
    Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S, Hartmann A (2006) Herbaspirillum hiltneri sp. nov., isolated from surfaced-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348CrossRefPubMedGoogle Scholar
  54. 54.
    Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryphophan-depended biosynthesis of auxins in soil. Plant Soil 147:207–215CrossRefGoogle Scholar
  55. 55.
    Sashidhar B, Podile AR (2009) Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedling. Microb Biotechnol 2:521–529CrossRefPubMedGoogle Scholar
  56. 56.
    Somers E, Ptacek D, Gysemon P, Srinivasan M, Vanderleyden J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810CrossRefPubMedGoogle Scholar
  57. 57.
    Spaepen S, Vanderleyden J, Reimans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448CrossRefPubMedGoogle Scholar
  58. 58.
    Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  59. 59.
    Stackebrandt E, Frederiksen W, Grimont GGM, PAD KP, Maiden MCJ, Nesme X, Rosseló-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047CrossRefPubMedGoogle Scholar
  60. 60.
    Steenhoudt O, Vanderleyden J (2000) Azospirillum a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefPubMedGoogle Scholar
  61. 61.
    Strepkowski T, Czaplinska M, Miedzinska K, Moulin L (2003) The variable part of the dnaK gene as an alternative Marker for phylogenetic studies in Rhizobia and related alpha proteobacteria. Syst Appl Microbiol 26:483–494CrossRefGoogle Scholar
  62. 62.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  63. 63.
    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035CrossRefPubMedGoogle Scholar
  64. 64.
    Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline conditions. Curr Microbiol 59:489–496CrossRefPubMedGoogle Scholar
  65. 65.
    Vazquez P, Holguin G, Puente ME, Lopez-Cortes G, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid lagoon. Biol Fertil Soils 30:460–468CrossRefGoogle Scholar
  66. 66.
    Vermeiren H, Willem A, Schoofs G, de Mot R, Keijers V, Hai W, Vandeleyden J (1999) The rice inoculant strain A15 is a nitrogen-fixing Pseudomonas stutzeri strain. Syst Appl Microbiol 22:215–224PubMedGoogle Scholar
  67. 67.
    Vikram A, Alagawadi AR, Krishnaraj PU, Mahesh Kumar KS (2007) Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. World J Microbiol Biotechnol 23:1333–1337CrossRefGoogle Scholar
  68. 68.
    Vitorino L, Chelo IM, Bacellar F, Ze-Ze L (2007) Rickettsiae phylogeny: a multi approach. Microbiology 153:160–168CrossRefPubMedGoogle Scholar
  69. 69.
    Weisburg WS, Barns SM, Pelletier DA, Lane DI (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedGoogle Scholar
  70. 70.
    Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105:7564–7569CrossRefPubMedGoogle Scholar
  71. 71.
    You CB, Song HX, Wang JP, Lin P, Hai WL (1991) Association of Alcaligenes faecalis with wetland rice. Plant Soil 137:81–85CrossRefGoogle Scholar
  72. 72.
    Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRefPubMedGoogle Scholar
  73. 73.
    Zimmer WM, Wesche M, Timmermans L (1998) Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7 sequencing and functional analysis of the gene locus. Cur Microbiol 6:327–333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anastasia Venieraki
    • 1
  • Maria Dimou
    • 1
    • 2
  • Panagiotis Pergalis
    • 1
  • Io Kefalogianni
    • 2
  • Iordanis Chatzipavlidis
    • 2
  • Panagiotis Katinakis
    • 1
    • 2
    Email author
  1. 1.Laboratory of Molecular Biology, Department of Agricultural BiotechnologyAgricultural University of AthensAthensGreece
  2. 2.Laboratory of General and Agricultural Microbiology, Department of Agricultural BiotechnologyAgricultural University of AthensAthensGreece

Personalised recommendations