Microbial Ecology

, Volume 60, Issue 3, pp 691–702 | Cite as

Characterization of Housing-Related Spontaneous Variations of Gut Microbiota and Expression of Toll-Like Receptors 2 and 4 in Rats

  • Evangelina Terán-Ventura
  • Mercè Roca
  • Maria Teresa Martin
  • Maria Lourdes Abarca
  • Vicente Martinez
  • Patri Vergara
Environmental Microbiology


Gut microbiota has been suggested as a key component of gut homeostasis, affecting immune responses within the gut. We determined changes in intestinal commensal bacteria and expression of toll-like receptors (TLR) 2 and 4 in rats bred under microbiologically controlled conditions (barrier), under standard conditions (conventional), and in barrier animals adapted to standard conditions (barrier/conventional). Cecal microbiota was analyzed by plate culture, and fluorescence in situ hybridization and microbial profiles were assessed by terminal restriction fragment length polymorphism. Cecal expression of TLR-2 and TLR-4 was determined by reverse transcription polymerase chain reaction (PCR). Total number of cecal bacteria was similar in the three groups. However, the barrier group showed a higher number of strict anaerobic bacteria (Bacteroides spp. and Clostridium spp.) while Bifidobacterium spp. were scarce. Re-housing the barrier-bred rats into conventional conditions led to a microbiota with intermediate characteristics between the barrier and conventional groups. Richness of the cecal microbial ecosystem was similar in the three groups, although a relative time-dependent variation, with highest homogeneity in the barrier group, was observed. Expression levels of TLR-2 and TLR-4 had no clear correlation with the microbiota. These results show that the relative composition of the cecal microbiota in rats varies spontaneously with changes in the environmental conditions, with minor impact in the expression of TLR-2 and TLR-4. These observations might be important in the understanding of variability in animal responses, particularly to immune-related stimuli, when assessed in the context of the environmental/microbiological conditions.


  1. 1.
    Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedGoogle Scholar
  2. 2.
    Andoh A, Benno Y, Kanauchi O, Fujiyama Y (2009) Recent advances in molecular approaches to gut microbiota in inflammatory bowel disease. Curr Pharm Des 15:2066–2073CrossRefPubMedGoogle Scholar
  3. 3.
    Bäckhed F, Normark S, Schweda EK, Oscarson S, Richter-Dahlfors A (2003) Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect 12:1057–1063CrossRefGoogle Scholar
  4. 4.
    Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435CrossRefPubMedGoogle Scholar
  5. 5.
    Camp JG, Kanther M, Semova I, Rawls JF (2009) Patterns and scales in gastrointestinal microbial ecology. Gastroenterology 136:1989–2002CrossRefPubMedGoogle Scholar
  6. 6.
    Cario E (2005) Bacterial interactions with cells of the intestinal mucosa: toll-like receptors and NOD2. Gut 54:1182–1193CrossRefPubMedGoogle Scholar
  7. 7.
    Collado MC, Isolauri E, Salminen S, Sanz Y (2009) The impact of probiotic on gut health. Curr Drug Metab 10:68–78CrossRefPubMedGoogle Scholar
  8. 8.
    Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014CrossRefPubMedGoogle Scholar
  9. 9.
    Dinoto A, Suksomcheep A, Ishizuka S, Kimura H, Hanada S, Kamagata Y, Asano K, Tomita F, Yokota A (2006) Modulation of rat cecal microbiota by administration of raffinose and encapsulated Bifidobacterium breve. Appl Environ Microbiol 72:784–792CrossRefPubMedGoogle Scholar
  10. 10.
    Duncan SH, Scott KP, Ramsay AG, Harmsen HJ, Welling GW, Stewart CS, Flint HJ (2003) Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69:1136–1142CrossRefPubMedGoogle Scholar
  11. 11.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 5728:1635–1638CrossRefGoogle Scholar
  12. 12.
    Fujisawa M, Kiyosue M, Hori M, Ozaki H (2006) Identification of Card15/Nod2 mRNA in intestinal tissue of experimentally induced colitis in rats. J Vet Med Sci 68:701–708CrossRefPubMedGoogle Scholar
  13. 13.
    Galdeano CM, Perdigon G (2006) The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226CrossRefPubMedGoogle Scholar
  14. 14.
    Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Salas A, Forcada P, Laguarda M, Gavalda J, Baena JA, Vilaseca J, Malagelada JR (1997) Incrimination of anaerobic bacteria in the induction of experimental colitis. Am J Physiol 272:G10–G15PubMedGoogle Scholar
  15. 15.
    Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, Van EW, Versalovic J, Weinstock JV, Rook GA (2006) Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 3:275–284CrossRefPubMedGoogle Scholar
  16. 16.
    Heine H, Delude RL, Monks BG, Espevik T, Golenbock DT (1999) Bacterial lipopolysaccharide induces expression of the stress response genes hop and H411. J Biol Chem 30:21049–21055CrossRefGoogle Scholar
  17. 17.
    Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, Lien K, Churchill TA, Lupicki M, Dieleman LA (2005) Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis 11:977–985CrossRefPubMedGoogle Scholar
  18. 18.
    Hojberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen BB (2005) Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 71:2267–2277CrossRefPubMedGoogle Scholar
  19. 19.
    Karlsson H, Hessle AR (2002) Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun 70:6688–6696CrossRefPubMedGoogle Scholar
  20. 20.
    Kim SC, Tonkonogy SL, Karrasch T, Jobin C, Sartor RB (2007) Dual-association of gnotobiotic IL-10−/− mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm Bowel Dis 13:1457–1466CrossRefPubMedGoogle Scholar
  21. 21.
    Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25PubMedGoogle Scholar
  22. 22.
    Looijer-van Langen MA, Dieleman LA (2009) Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis 15:454–462CrossRefPubMedGoogle Scholar
  23. 23.
    Mai V, Katki HA, Harmsen H, Gallaher D, Schatzkin A, Baer DJ, Clevidence B (2004) Effects of a controlled diet and black tea drinking on the fecal microflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomized feeding study. J Nutr 134:473–478PubMedGoogle Scholar
  24. 24.
    Marteau PR (2002) Probiotics in clinical conditions. Clin Rev Allergy Immunol 22:255–273CrossRefPubMedGoogle Scholar
  25. 25.
    Montesi A, Garcia-Albiach R, Pozuelo MJ, Pintado C, Goni I, Rotger R (2005) Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Int J Food Microbiol 98:281–289CrossRefPubMedGoogle Scholar
  26. 26.
    Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 160:1–9CrossRefPubMedGoogle Scholar
  27. 27.
    Ootsubo M, Shimizu T, Tanaka R, Sawabe T, Tajima K, Yoshimizu M, Ezura Y, Ezaki T, Oyaizu H (2002) Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. J Appl Microbiol 93:60–68CrossRefPubMedGoogle Scholar
  28. 28.
    Porras M, Martin MT, Soler M, Vergara P (2004) Intestinal motor disorders associated with cyclical bacterial overgrowth in a rat model of enteritis. Am J Physiol Gastrointest Liver Physiol 287:G58–G64CrossRefPubMedGoogle Scholar
  29. 29.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241CrossRefPubMedGoogle Scholar
  30. 30.
    Rolhion N, Rfeuille-Michaud A (2007) Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 13:1277–1283CrossRefPubMedGoogle Scholar
  31. 31.
    Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C, Dubuquoy L, Dubuquoy C, Merour E, Geboes K, Chamaillard M, Ouwehand A, Leyer G, Carcano D, Colombel JF, Ardid D, Desreumaux P (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13:35–37CrossRefPubMedGoogle Scholar
  32. 32.
    Ruiz PA, Hoffmann M, Szcesny S, Blaut M, Haller D (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 115:441–450CrossRefPubMedGoogle Scholar
  33. 33.
    Salzman NH, de Paterson JH, Harmsen HJ, Welling GW, Bos A (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148:3651–3660PubMedGoogle Scholar
  34. 34.
    Setoyama H, Imaoka A, Ishikawa H, Umesaki Y (2003) Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microbes Infect 5:115–122CrossRefPubMedGoogle Scholar
  35. 35.
    Siggers RH, Siggers J, Boye M, Thymann T, Mølbak L, Leser T, Jensen BB, Sangild PT (2008) Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J Nutr 138:1437–1444PubMedGoogle Scholar
  36. 36.
    Silva MA, Jury J, Porras M, Vergara P, Perdue MH (2008) Intestinal epithelial barrier dysfunction and dendritic cell redistribution during early stages of inflammation in the rat: role for TLR-2 and -4 blockage. Inflamm Bowel Dis 14:632–644CrossRefPubMedGoogle Scholar
  37. 37.
    Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H (2005) Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:3380–3389CrossRefPubMedGoogle Scholar
  38. 38.
    Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Mraz M, Majorova E, Arato A (2008) Increased expression of toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol 151:34–41CrossRefPubMedGoogle Scholar
  39. 39.
    Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T (2008) Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 298:463–472CrossRefPubMedGoogle Scholar
  40. 40.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451CrossRefPubMedGoogle Scholar
  41. 41.
    Tilg H, Moschen AR, Kaser A (2009) Obesity and the microbiota. Gastroenterology 136:1476–1483CrossRefPubMedGoogle Scholar
  42. 42.
    Vaahtovuo J, Korkeamaki M, Munukka E, Viljanen MK, Toivanen P (2005) Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. J Microbiol Methods 63:276–286CrossRefPubMedGoogle Scholar
  43. 43.
    Verdú EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P, Jackson W, Mao Y, Wang L, Rochat F, Collins S (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55:182–190CrossRefPubMedGoogle Scholar
  44. 44.
    Wirtz S, Neurath MF (2007) Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 59:1073–1083CrossRefPubMedGoogle Scholar
  45. 45.
    Wohlgemuth S, Haller D, Blaut M, Loh G (2009) Reduced microbial diversity and high numbers of one single Escherichia coli strain in the intestine of colitic mice. Environ Microbiol 11:1562–1571CrossRefPubMedGoogle Scholar
  46. 46.
    Wohlsen T, Bayliss J, Gray B, Bates J, Katouli M (2006) Evaluation of an alternative method for the enumeration and confirmation of Clostridium perfringens from treated and untreated sewages. Lett Appl Microbiol 42:438–444CrossRefPubMedGoogle Scholar
  47. 47.
    Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Evangelina Terán-Ventura
    • 1
  • Mercè Roca
    • 3
  • Maria Teresa Martin
    • 1
    • 2
  • Maria Lourdes Abarca
    • 4
  • Vicente Martinez
    • 1
  • Patri Vergara
    • 1
    • 2
    • 5
  1. 1.Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
  2. 2.Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
  3. 3.Centre de Recerca en Sanitat Animal (CRESA)BarcelonaSpain
  4. 4.Department of Animal Health and AnatomyUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
  5. 5.Edificio V, Unidad de FisiologíaUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations