Microbial Ecology

, Volume 60, Issue 2, pp 381–393 | Cite as

Root Colonization by Pseudomonas sp. DSMZ 13134 and Impact on the Indigenous Rhizosphere Bacterial Community of Barley

  • Katharina Buddrus-Schiemann
  • Michael Schmid
  • Karin Schreiner
  • Gerhard Welzl
  • Anton Hartmann
Plant Microbe Interactions

Abstract

Over the last few decades, the ability of rhizosphere bacteria to promote plant growth has been considered to be of scientific, ecological, and economic interest. The properties and mechanisms of interaction of these root-colonizing bacteria have been extensively investigated, and plant protection agents that are based on these bacterial strains have been developed for agricultural applications. In the present study, the root colonization of barley by Pseudomonas sp. DSMZ 13134, that is contained in the commercially available plant protection agent Proradix®, was examined using the fluorescence in situ hybridization method with oligonucleotide probes and specific gfp-tagging of the inoculant strain in combination with confocal laser scanning microscopy. In the first phase of root colonization, the inoculant strain competed successfully with seed and soil-borne bacteria (including Pseudomonads) for the colonization of the rhizoplane. Pseudomonas sp. DSMZ 13134 could be detected in all parts of the roots, although it did not belong to the dominant members of the root-associated bacterial community. Gfp-tagged cells were localized particularly in the root hair zone, and high cell densities were apparent on the root hair surface. To investigate the impact of the application of Proradix® on the structure of the dominant root-associated bacterial community of barley, T-RFLP analyses were performed. Only a transient community effect was found until 3 weeks post-application.

Notes

Acknowledgments

We thank Dr. Tillmann Lüders and Sabine Schäfer, Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany, for their introduction to and their very helpful advice on the T-RFLP method, and Dr. Uta von Rad, Institute of Biochemical Plant Pathology, for providing the gfp-tagged Pseudomonas sp. DSMZ 13134 strain. Furthermore, we are grateful to Sourcon-Padena GmbH & Co. KG, Tübingen, Germany, for providing Proradix® and for performing the inoculation of the seeds by vacuum infiltration.

References

  1. 1.
    Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770PubMedGoogle Scholar
  2. 2.
    Amann RI, Zarda B, Stahl DA, Schleifer KH (1992) Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58:3007–3011PubMedGoogle Scholar
  3. 3.
    Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246PubMedGoogle Scholar
  4. 4.
    Baldani VLD, de B. Alvarez MA, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46CrossRefGoogle Scholar
  5. 5.
    Bankhead SB, Landa BB, Lutton E, Weller DM, McSpadden Gardener BB (2004) Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiol Ecol 49:307–318CrossRefPubMedGoogle Scholar
  6. 6.
    Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574CrossRefGoogle Scholar
  7. 7.
    Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13CrossRefPubMedGoogle Scholar
  8. 8.
    Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350CrossRefPubMedGoogle Scholar
  9. 9.
    Bloemberg GV, O'Toole GA, Lugtenberg BJJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551PubMedGoogle Scholar
  10. 10.
    Cassidy MB, Leung KT, Lee H, Trevors JT (2000) A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J Microbiol Methods 40:135–145CrossRefPubMedGoogle Scholar
  11. 11.
    Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS 365, using scanning electron microscopy. Mol Plant-Microb Interact 10:79–86CrossRefGoogle Scholar
  12. 12.
    Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249CrossRefPubMedGoogle Scholar
  13. 13.
    Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444PubMedGoogle Scholar
  14. 14.
    De Leij FAAM, Whipps JM, Lynch JM (1993) The use of colony development for the characterization of bacterial communities in soil and on roots. Microb Ecol 27:81–97Google Scholar
  15. 15.
    Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato—Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant-Microb Interact 13:1177–1183CrossRefGoogle Scholar
  16. 16.
    Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:1–9Google Scholar
  17. 17.
    Dowling DN, O'Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141CrossRefGoogle Scholar
  18. 18.
    Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res 17:7843–7853CrossRefPubMedGoogle Scholar
  19. 19.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  20. 20.
    Fitch WM (1966) An improved method of testing for evolutionary homology. J Mol Biol 16:9–16CrossRefPubMedGoogle Scholar
  21. 21.
    Gamalero E, Lingua G, Caprì FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87CrossRefPubMedGoogle Scholar
  22. 22.
    Gilbert GS, Parke JL, Clayton MK, Handelsman J (1993) Effects of an introduced bacterium on bacterial communities on roots. Ecology 74:840–854CrossRefGoogle Scholar
  23. 23.
    Götz M, Gomes NCM, Dratwinski A, Costa R, Berg G, Peixoto R, Mendonça-Hagler L, Smalla K (2006) Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol Ecol 56:207–218CrossRefPubMedGoogle Scholar
  24. 24.
    Graff A, Conrad R (2005) Impact of flooding on soil bacterial communities associated with poplar (Populus sp.) trees. FEMS Microbiol Ecol 53:401–415CrossRefPubMedGoogle Scholar
  25. 25.
    Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385CrossRefGoogle Scholar
  26. 26.
    Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  27. 27.
    Hartmann A, Pukall R, Rothballer M, Gantner S, Metz S, Schloter M, Mogge B (2004) Microbial community analysis in the rhizosphere by in situ and ex situ application of molecular probing, biomarker and cultivation techniques. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant Surface Microbiology. Springer-Verlag, Berlin, pp 449–469Google Scholar
  28. 28.
    Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14CrossRefGoogle Scholar
  29. 29.
    Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  30. 30.
    Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288CrossRefPubMedGoogle Scholar
  31. 31.
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319CrossRefPubMedGoogle Scholar
  32. 32.
    Jacoud C, Faure D, Wadoux P, Bally R (1998) Development of a strain-specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiol Ecol 27:43–51CrossRefGoogle Scholar
  33. 33.
    Juretschko S, Timmermann G, Schmid M, Schleifer K-H, Pommerening-Roser A, Koops H-P, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051PubMedGoogle Scholar
  34. 34.
    Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236CrossRefPubMedGoogle Scholar
  35. 35.
    King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307PubMedGoogle Scholar
  36. 36.
    Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431CrossRefGoogle Scholar
  37. 37.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175Google Scholar
  38. 38.
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959CrossRefPubMedGoogle Scholar
  39. 39.
    Lottmann J, Heuer H, de Vries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49CrossRefPubMedGoogle Scholar
  40. 40.
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371CrossRefPubMedGoogle Scholar
  41. 41.
    Lueders T, Kindler R, Miltner A, Friedrich MW, Kaestner M (2006) Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl Environ Microbiol 72:5342–5348CrossRefPubMedGoogle Scholar
  42. 42.
    Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefPubMedGoogle Scholar
  43. 43.
    Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 25:593–600Google Scholar
  44. 44.
    Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56PubMedGoogle Scholar
  45. 45.
    Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165–175CrossRefPubMedGoogle Scholar
  46. 46.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  47. 47.
    Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol 66:4372–4377CrossRefPubMedGoogle Scholar
  48. 48.
    Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16CrossRefGoogle Scholar
  49. 49.
    Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50CrossRefPubMedGoogle Scholar
  50. 50.
    Robleto EA, Borneman J, Triplett EW (1998) Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture-independent perspective. Appl Environ Microbiol 64:5020–5022PubMedGoogle Scholar
  51. 51.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  52. 52.
    Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis 25:159–179Google Scholar
  53. 53.
    Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381CrossRefPubMedGoogle Scholar
  54. 54.
    Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556–3565CrossRefPubMedGoogle Scholar
  55. 55.
    Semenov AM, van Bruggen AHC, Zelenev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb Ecol 37:116–128CrossRefPubMedGoogle Scholar
  56. 56.
    Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249CrossRefPubMedGoogle Scholar
  57. 57.
    Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347CrossRefPubMedGoogle Scholar
  58. 58.
    van der Bij AJ, de Weger LA, Tucker WT, Lugtenberg BJJ (1996) Plasmid stability in Pseudomonas fluorescens in the rhizosphere. Appl Environ Microbiol 62:1076–1080PubMedGoogle Scholar
  59. 59.
    van Elsas JD, Dijkstra AF, Govaert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160CrossRefGoogle Scholar
  60. 60.
    van Veen JA, Morgan JAW, Whipps JM (2007) Methodological approaches to the study of carbon flow and the associated microbial population dynamics in the rhizosphere. In: Pinto R, Varanini Z, Nannipieri P (eds) The Rhizosphere: Biochemistry and organic substances at the soil-plant interface, vol 2. CRC Press, Boca Raton, pp 371–399Google Scholar
  61. 61.
    Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358PubMedGoogle Scholar
  62. 62.
    Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  63. 63.
    Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Katharina Buddrus-Schiemann
    • 1
  • Michael Schmid
    • 1
  • Karin Schreiner
    • 2
  • Gerhard Welzl
    • 3
  • Anton Hartmann
    • 1
  1. 1.Department Microbe-Plant InteractionsHelmholtz Zentrum München, German Research Centre for Environmental Health (GmbH)NeuherbergGermany
  2. 2.Institute of Soil Ecology, Department Terrestrial EcogeneticsHelmholtz Zentrum München, German Research Centre for Environmental Health (GmbH)NeuherbergGermany
  3. 3.Institute of Developmental GeneticsHelmholtz Zentrum München, German Research Centre for Environmental Health (GmbH)NeuherbergGermany

Personalised recommendations