Microbial Ecology

, Volume 60, Issue 4, pp 721–729 | Cite as

Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche

  • Janaki Purushe
  • Derrick E. Fouts
  • Mark Morrison
  • Bryan A. White
  • Roderick I. Mackie
  • the North American Consortium for Rumen Bacteria
  • Pedro M. Coutinho
  • Bernard Henrissat
  • Karen E. NelsonEmail author
Genes and Genomes


The Prevotellas comprise a diverse group of bacteria that has received surprisingly limited attention at the whole genome-sequencing level. In this communication, we present the comparative analysis of the genomes of Prevotella ruminicola 23 (GenBank: CP002006) and Prevotella bryantii B14 (GenBank: ADWO00000000), two gastrointestinal isolates. Both P. ruminicola and P. bryantii have acquired an extensive repertoire of glycoside hydrolases that are targeted towards non-cellulosic polysaccharides, especially GH43 bifunctional enzymes. Our analysis demonstrates the diversity of this genus. The results from these analyses highlight their role in the gastrointestinal tract, and provide a template for additional work on genetic characterization of these species.


Synteny Block Ruminal Bacterium Local Synteny Shared Synteny Ruminal Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The North American Consortium for Genomics of Fibrolytic Ruminal Bacteria includes I. K. O. Cann, R. I. Mackie, and B. A. White (University of Illinois), C. W. Forsberg (University of Guelph), E. Mongodin and S. Daugherty (University of Maryland), J. B. Russell and D. B. Wilson (Cornell University), W. C. Nelson (UCLA), Karen E. Nelson (JCVI) and Mark Morrison (The Ohio State University). The Consortium was supported by the Initiative for Future Agriculture and Food Systems, Grant no. 2000-52100-9618 and Grant No 2001-52100-11330, from the USDA Cooperative State Research, Education, and Extension Service's National Research Initiative Competitive Grants Program. We also gratefully acknowledge the support from Tanja Davidson and Granger Sutton at the JCVI for their recent assistance with the Fibrumba database and webpage curation. We also thank Jonathan Badger for the use of his tree-building scripts.


  1. 1.
    Avgustin G, Wallace RJ, Flint HJ (1997) Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47:284–288CrossRefPubMedGoogle Scholar
  2. 2.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  3. 3.
    Bryant MP, Small N, Bouma C, Chu H (1958) Bacteroides ruminicola n. sp. and Succinimonas amylolytica; the new genus and species; species of succinic acid-producing anaerobic bacteria of the bovine rumen. J Bacteriol 76:15–23PubMedGoogle Scholar
  4. 4.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefPubMedGoogle Scholar
  5. 5.
    Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30:2478–2483CrossRefPubMedGoogle Scholar
  6. 6.
    Downes J, Liu M, Kononen E, Wade WG (2009) Prevotella micans sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 59:771–774CrossRefPubMedGoogle Scholar
  7. 7.
    Downes J, Sutcliffe IC, Hofstad T, Wade WG (2006) Prevotella bergensis sp. nov., isolated from human infections. Int J Syst Evol Microbiol 56:609–612CrossRefPubMedGoogle Scholar
  8. 8.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedGoogle Scholar
  9. 9.
    Felsenstein J (2004) PHYLIP version 3.6 [computer progam]. Seattle: Department of Genome Sciences, University of Washington, Seattle. Available at: Accessed 26 Oct 2009
  10. 10.
    Gardner RG, Russell JB, Wilson DB, Wang GR, Shoemaker NB (1996) Use of a modified Bacteroides–Prevotella shuttle vector to transfer a reconstructed beta-1, 4-d-endoglucanase gene into Bacteroides uniformis and Prevotella ruminicola B(1)4. Appl Environ Microbiol 62:196–202PubMedGoogle Scholar
  11. 11.
    Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57CrossRefPubMedGoogle Scholar
  12. 12.
    Holdeman LV, Good IJ, Moore WE (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31:359–375PubMedGoogle Scholar
  13. 13.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  14. 14.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7CrossRefPubMedGoogle Scholar
  15. 15.
    Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457CrossRefPubMedGoogle Scholar
  16. 16.
    Morrison M, Daugherty SC, Nelson WC, Davidsen T, Nelson KE (2009) The FibRumBa database: a resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microbial ecology 59(2):212–213CrossRefPubMedGoogle Scholar
  17. 17.
    Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, Fraser CM et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329CrossRefPubMedGoogle Scholar
  18. 18.
    Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329CrossRefPubMedGoogle Scholar
  19. 19.
    Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM, Eisen J (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98:4136–4141CrossRefPubMedGoogle Scholar
  20. 20.
    Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677CrossRefPubMedGoogle Scholar
  21. 21.
    Paster BJ, Dewhirst FE, Olsen I, Fraser GJ (1994) Phylogeny of bacteroides, prevotella, and porphyromonas spp. and related bacteria. J Bacteriol 176:725–732PubMedGoogle Scholar
  22. 22.
    Portillo MC, Gonzalez JM (2009) CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus. J Appl Genet 50:421–430PubMedGoogle Scholar
  23. 23.
    Ramsak A, Peterka M, Tajima K, Martin JC, Wood J, Johnston ME, Aminov RI, Avgustin G (2000) Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol Ecol 33:69–79CrossRefPubMedGoogle Scholar
  24. 24.
    Retief JD (2000) Phylogenetic analysis using PHYLIP. Methods Mol Biol 132:243–258PubMedGoogle Scholar
  25. 25.
    Robinson IM, Allison MJ, Bucklin JA (1981) Characterization of the cecal bacteria of normal pigs. Appl Environ Microbiol 41:950–955PubMedGoogle Scholar
  26. 26.
    Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt HA, von Haeseler A (2007) Maximum-likelihood analysis using TREE-PUZZLE. Curr Protoc Bioinformatics Chapter 6: Unit 6.6Google Scholar
  28. 28.
    Shah HN, Collins DM (1990) Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int J Syst Bacteriol 40:205–208CrossRefPubMedGoogle Scholar
  29. 29.
    Shoemaker NB, Vlamakis H, Hayes K, Salyers AA (2001) Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67:561–568CrossRefPubMedGoogle Scholar
  30. 30.
    Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186CrossRefPubMedGoogle Scholar
  31. 31.
    Ueki A, Akasaka H, Satoh A, Suzuki D, Ueki K (2007) Prevotella paludivivens sp. nov., a novel strictly anaerobic, Gram-negative, hemicellulose-decomposing bacterium isolated from plant residue and rice roots in irrigated rice-field soil. Int J Syst Evol Microbiol 57:1803–1809CrossRefPubMedGoogle Scholar
  32. 32.
    Van Gylswyk NO (1990) Enumeration and presumptive identification of some functional-groups of bacteria in the rumen of dairy-cows fed grass silage-based diets. Fems Microbiol Ecol 73:243–253CrossRefGoogle Scholar
  33. 33.
    Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163CrossRefPubMedGoogle Scholar
  34. 34.
    Wood J, Scott KP, Avgustin G, Newbold CJ, Flint HJ (1998) Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. Appl Environ Microbiol 64:3683–3689PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Janaki Purushe
    • 1
  • Derrick E. Fouts
    • 1
  • Mark Morrison
    • 2
    • 5
  • Bryan A. White
    • 3
  • Roderick I. Mackie
    • 3
  • the North American Consortium for Rumen Bacteria
  • Pedro M. Coutinho
    • 4
  • Bernard Henrissat
    • 4
  • Karen E. Nelson
    • 1
    Email author
  1. 1.Department of Human Genomic MedicineThe J. Craig Venter Institute (JCVI)RockvilleUSA
  2. 2.The MAPLE Research Initiative, Department of Animal SciencesThe Ohio State UniversityColumbusUSA
  3. 3.Departments of Animal Sciences and PathobiologyUniversity of IllinoisUrbanaUSA
  4. 4.Architecture et Fonction des Macromolécules BiologiquesUMR6098, CNRS and Universités of Aix-Marseille I and IIMarseilleFrance
  5. 5.CSIRO Livestock Industries, Queensland Bioscience PrecinctSt LuciaAustralia

Personalised recommendations