Advertisement

Microbial Ecology

, Volume 60, Issue 4, pp 862–872 | Cite as

Rapid and Efficient Identification of Agrobacterium Species by recA Allele Analysis

Agrobacterium recA Diversity
  • Denis Costechareyre
  • Ali Rhouma
  • Céline Lavire
  • Perrine Portier
  • David Chapulliot
  • Franck Bertolla
  • Ali Boubaker
  • Yves Dessaux
  • Xavier Nesme
Methods

Abstract

The analysis of housekeeping recA gene sequences from 138 strains from 13 species or genomic species of Agrobacterium, nine being biovar 1 genomospecies, and the others Agrobacterium larrymoorei, Agrobacterium rubi, Agrobacterium sp. NCPPB 1650, and Agrobacterium vitis and one “former” Agrobacterium species, Rhizobium rhizogenes, led to the identification of 50 different recA alleles and to a clear delineation of the 14 species or genomospecies entirely consistent with that obtained by amplified fragment length polymorphism (AFLP) analysis. The relevance of a recA sequencing approach for epidemiological analyses was next assessed on agrobacterial Tunisian isolates. All Tunisian isolates were found to belong to the Agrobacterium tumefaciens/biovar 1 species complex by both biochemical tests and rrs sequencing. recA sequence analysis further permitted their unambiguous assignment to A. tumefaciens genomospecies G4, G6, G7, and G8 in total agreement with the results of an AFLP-based analysis. At subspecific level, several Tunisian recA alleles were novel, indicating the power and accuracy of recA-based typing for studies of Agrobacterium spp.

Keywords

Amplify Fragment Length Polymorphism Rhizobium Agrobacterium Crown Gall Amplify Fragment Length Polymorphism Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank M.-A. Poirier, C. Lerondelle, and M. Briand for technical assistance and J. Nesme for processing sequences for EMBL. This work was supported by the CMCU/PHC program Utique 09G0923 “Spécificités écologiques des espèces d’Agrobacterium tumefaciens des sols tunisiens” and by the “Institut de l’Olivier” in Tunisia, “Université Lyon 1”, and the “Institut des Sciences du Végétal-CNRS” in France, as a follow-up to the international INCO research program “Integrated Control of Crown Gall in Mediterranean Countries” ERBIC18CT970198. AFLP analyses were performed at the DTAMB facility at IFR 41 (University of Lyon 1), and representative strains are stored at CFBP (INRA, Angers).

References

  1. 1.
    Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51:1023–1026PubMedGoogle Scholar
  2. 2.
    Bouzar H, Moore LW (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tall grass prairie. Appl Environ Microbiol 53:717–721PubMedGoogle Scholar
  3. 3.
    Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58:3413–3416PubMedGoogle Scholar
  4. 4.
    de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins D, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syt Bacteriol 48:1277–1290CrossRefGoogle Scholar
  5. 5.
    De Ley J (1974) Phylogeny of procaryotes. Taxon 23:291–300CrossRefGoogle Scholar
  6. 6.
    De Ley J, Tijtgat R, De Smedt J, Michiels M (1973) Thermal stability of DNA: DNA hybrids within the genus Agrobacterium. J Gen Microbiol 78:241–252Google Scholar
  7. 7.
    Farrand SK, Van Berkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687CrossRefPubMedGoogle Scholar
  8. 8.
    Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048PubMedGoogle Scholar
  9. 9.
    Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M, Schell J (1977) Ti plasmids of Agrobacterium tumefaciens as conjugative plasmids. Nature 265:561–563CrossRefPubMedGoogle Scholar
  10. 10.
    Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  11. 11.
    Holmes B, Roberts P (1981) The classification, identification and nomenclature of agrobacteria. J Appl Bacteriol 50:443–467Google Scholar
  12. 12.
    Keane PJ, Kerr A, New PB (1970) Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Austral J Biol Sci 23:585–595Google Scholar
  13. 13.
    Kersters K, De Ley J (1984) Agrobacterium Conn 1942. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol. 1. Williams & Wilkins, Baltimore, pp 244–254Google Scholar
  14. 14.
    Krimi Z, Petit A, Mougel C, Dessaux Y, Nesme X (2002) Seasonal fluctuations and long-term persistence of pathogenic populations of Agrobacterium spp. in soils. Appl Environ Microbiol 68:3358–33654CrossRefPubMedGoogle Scholar
  15. 15.
    Krimi Z, Raio A, Petit A, Nesme X, Dessaux Y (2006) Eucalyptus (E occidentalis) plantlets may be naturally infected by pathogenic Agrobacterium tumefaciens. Eur J Plant Pathol 116:237–246CrossRefGoogle Scholar
  16. 16.
    Llop P, Lastra B, Marsal H, Murillo J, Lopez MM (2003) Tracking Agrobacterium strains by a RAPD system to identify single colonies from plant tumours. Eur J Plant Pathol 109:381–389CrossRefGoogle Scholar
  17. 17.
    Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145CrossRefPubMedGoogle Scholar
  18. 18.
    Martens M, Delaere M, Coopman R, De Vos P, Gillis M, Willems A (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503CrossRefPubMedGoogle Scholar
  19. 19.
    Moore LW, Cooksey DA (1981) Biology of Agrobacterium tumefaciens: plant interactions. Int Rev Cytol 13(Suppl):15–46Google Scholar
  20. 20.
    Mougel C, Cournoyer B, Nesme X (2001) Novel tellurite-amended media and specific chromosomal Ti plasmid probes for direct analysis of soil populations of Agrobacterium biovars 1 and 2. Appl Environ Microbiol 67:65–74CrossRefPubMedGoogle Scholar
  21. 21.
    Mougel C, Thioulouse J, Perrière G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. Int J Syst Evol Microbiol 52:573–586PubMedGoogle Scholar
  22. 22.
    Nesme X, Ponsonnet C, Picard C, Normand P (1992) Chromosomal and pTi genotypes of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiol Ecol 101:189–196CrossRefGoogle Scholar
  23. 23.
    Oger P, Dessaux Y, Petit A, Gardan L, Manceau C, Chomel C, Nesme X (1998) Validity, sensitivity and resolution limit of the PCR-RFLP analysis of the rrs (16 rRNA gene) as a tool to identify soil-borne and plant associated bacterial population. Genet Select Evol 30(Suppl 1):S311–S332CrossRefGoogle Scholar
  24. 24.
    Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Bacteriol 40:236–241CrossRefGoogle Scholar
  25. 25.
    Panagopoulos CG, Psallidas PG (1973) Characteristics of Greek isolates of Agrobacterium tumefaciens (E F Smith & Townsend) Conn. J Appl Bacteriol 36:233–240PubMedGoogle Scholar
  26. 26.
    Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161:300–309PubMedGoogle Scholar
  27. 27.
    Popoff MY, Kersters K, Kiredjian M, Miras I, Coynault C (1984) Position systématique de souches de Agrobacterium d'origine hospitalière. Ann Microbiol 135:427–442Google Scholar
  28. 28.
    Portier P, Fischer-Le Saux M, Mougel C, Lerondelle C, Chapulliot D, Thioulouse J, Nesme X (2006) Identification of genomic species from Agrobacterium biovar 1 by AFLP genomic markers. Appl Environ Microbiol 72:123–7131CrossRefGoogle Scholar
  29. 29.
    Rhouma A, Boubaker A, Nesme X, Dessaux Y (2005) Susceptibility of some stone and pome fruit rootstocks to crown gall. Phytopathol Mediterr 44:275–284Google Scholar
  30. 30.
    Rhouma A, Boubaker A, Nesme X, Dessaux Y (2006) Plasmid and chromosomal diversity of a Tunisian collection of Agrobacterium tumefaciens strains. Tunis J Plant Protect 1:73–84Google Scholar
  31. 31.
    Sawada H, Ieki H, Oyaizu H, Matsumoto S (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702CrossRefPubMedGoogle Scholar
  32. 32.
    Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047CrossRefPubMedGoogle Scholar
  33. 33.
    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedGoogle Scholar
  34. 34.
    Teyssier-Cuvelle S, Oger P, Mougel C, Groud K, Farrand S, Nesme X (2004) A highly selectable and highly transferable Ti plasmid to study conjugal host range and Ti plasmid dissemination in complex ecosystems. Microbial Ecol 48:10–18CrossRefGoogle Scholar
  35. 35.
    Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170CrossRefPubMedGoogle Scholar
  36. 36.
    Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martinez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 8:702–716CrossRefGoogle Scholar
  37. 37.
    Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  38. 38.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevisky MI, Moore LH, Moore WEC, Murray GRE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  39. 39.
    Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120CrossRefPubMedGoogle Scholar
  40. 40.
    Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola De Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Env Microbiol 51:89–103Google Scholar
  41. 41.
    Young JM, Pennycook SR, Watson DRW (2006) Proposal that Agrobacterium radiobacter has priority over Agrobacterium tumefaciens. Request for an opinion. Int J Syst Env Microbiol 56:491–493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Denis Costechareyre
    • 1
  • Ali Rhouma
    • 2
  • Céline Lavire
    • 1
  • Perrine Portier
    • 1
    • 3
  • David Chapulliot
    • 1
  • Franck Bertolla
    • 1
  • Ali Boubaker
    • 4
  • Yves Dessaux
    • 5
  • Xavier Nesme
    • 1
  1. 1.Ecologie Microbienne UMR 5557 USC 1193Université de Lyon, Université Lyon 1, CNRS, INRAVilleurbanne cedexFrance
  2. 2.Research Unit of Plant Protection and EnvironmentOlive Tree InstituteTunisTunisia
  3. 3.Pathologie végétale, UMR 077, CFBP, INRA, Agrocampus Ouest, Université d’AngersBeaucouzé cedexFrance
  4. 4.Laboratoire de PhytopathologieInstitut National Agronomique de TunisieTunisTunisia
  5. 5.Institut des Sciences du Végétal, UPR 2355CNRSGif-sur-Yvette cedexFrance

Personalised recommendations