Microbial Ecology

, Volume 60, Issue 3, pp 516–527 | Cite as

Active Archaeal Communities at Cold Seep Sediments Populated by Siboglinidae Tubeworms from the Storegga Slide

  • Cassandre Sara Lazar
  • Julie Dinasquet
  • Patricia Pignet
  • Daniel Prieur
  • Laurent Toffin
Environmental Microbiology


Siboglinid tubeworms in cold seep sediments can locally modify the geochemical gradients of electron acceptors and donors, hence creating potential microhabitats for prokaryotic populations. The archaeal communities associated with sediments populated by Oligobrachia haakonmosbiensis and Sclerolinum contortum Siboglinid tubeworms in the Storegga Slide were examined in this study. Vertical distribution of archaeal communities was investigated using denaturing gradient gel electrophoresis based on 16S rRNA genes. The active fraction of the archaeal community was assessed by using reverse-transcribed rRNA. Archaeal communities associated with sediments colonized by tubeworms were affiliated with uncultivated archaeal lineages of the Crenarchaeota and Euryarchaeota. The composition of the active archaeal populations changed with depth indicating a reorganization of microbial communities. 16S rRNA gene libraries were dominated by sequences affiliated to the Rice Cluster V which are unusual in marine sediment samples. Moreover, this study provides the first evidence of living Crenarchaeota of the Rice Cluster V in cold seep sediments. Furthermore, the Storegga Slide sediments harbored a high diversity of other minor groups of uncultivated lineages including Terrestrial Miscellaneous Euryarchaeotal Group, Marine Benthic Group (MBG)-D, MBG-E, Deep-Sea Hydrothermal Vent Euryarchaeotal Group, Lake Dagow Sediment, Val Kotinen Lake clade III, and Sippenauer Moor 1. Thus, we hypothesize that the vertical geochemical imprint created by the tubeworms could support broad active archaeal populations in the Siboglinidae-populated Storegga Slide sediments.

Supplementary material

248_2010_9654_MOESM1_ESM.doc (96 kb)
SM1Rarefaction analysis of the RNA-derived 16S rRNA gene libraries, done using the RarFac program. Filled diamond, 0–6-cm section gene library; filled square, 6–8-cm section gene library (DOC 96 kb)
248_2010_9654_MOESM2_ESM.docx (21 kb)
SM2Closest relatives of representative clones from RNA-derived archaeal 16S rRNA gene libraries from depths 0 to 6 cm (Sto-0_6-rt) and 6 to 8 cm (Sto-6_8-rt) (DOCX 21 kb)


  1. 1.
    Alm EW, Stahl DA (2000) Critical factors influencing the recovery and integrity of rRNA extracted from environmental samples: use of an optimized protocol to measure depth-related biomass distribution in freshwater sediments. J Microbiol Methods 40:153–162CrossRefPubMedGoogle Scholar
  2. 2.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. 3.
    Biddle JF, Lipp JS, Lever MA, Llyod KG, Sorensen KB, Anderson R, Fredricks HF, Elvert M et al (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851CrossRefGoogle Scholar
  4. 4.
    Boetius A (2005) Microfauna–macrofauna interaction in the seafloor: lessons from the tubeworm. PLoS Biol 3:375–378CrossRefGoogle Scholar
  5. 5.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieske A (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefPubMedGoogle Scholar
  6. 6.
    Bryn P, Berg K, Forsgerb CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga Slide. Mar Petrol Geol 22:11–19CrossRefGoogle Scholar
  7. 7.
    Bünz S, Mienert J, Berndt C (2003) Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet Sci Lett 209:291–307CrossRefGoogle Scholar
  8. 8.
    Bünz S, Mienert J, Brynw P, Bergw K (2005) Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide. Basin Res 17:109–122CrossRefGoogle Scholar
  9. 9.
    Casamayor EO, Massana R, Benlloch S, Ovreas L, Diez B, Goddard VJ, Gasol JM, Joint I et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348CrossRefPubMedGoogle Scholar
  10. 10.
    Casamayor EO, Schäfer H, Baneras L, Salio CP, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508CrossRefPubMedGoogle Scholar
  11. 11.
    Chaban B, Ng SYM, Jarrell KF (2006) Archaeal habitats—from the extreme to the ordinary. Can J Microbiol 52:73–116CrossRefPubMedGoogle Scholar
  12. 12.
    Cordes EE, Bergquist DC, Shea K, Fisher CR (2003) Hydrogen sulphide demand of long-lived vestimentiferan tube worm aggregations modifies the chemical environment at deep-sea hydrocarbon seeps. Ecol Lett 6:212–219CrossRefGoogle Scholar
  13. 13.
    Dählmann A, de Lange GJ (2003) Fluid–sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sci Lett 212:377–391CrossRefGoogle Scholar
  14. 14.
    Dando PR, Southward AJ, Southward EC, Lamont P, Harvey R (2008) Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep Sea Res I 55:966–996CrossRefGoogle Scholar
  15. 15.
    DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefPubMedGoogle Scholar
  16. 16.
    Fry JC, Webster G, Cragg BA, Weightman AJ, Parkes RJ (2006) Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:86–98CrossRefPubMedGoogle Scholar
  17. 17.
    Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149CrossRefPubMedGoogle Scholar
  18. 18.
    Galand PE, Lovejoy C, Vincent WF (2006) Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat Microb Ecol 44:115–126CrossRefGoogle Scholar
  19. 19.
    Glissmann K, Chin K-J, Casper P, Conrad R (2004) Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microb Ecol 48:389–399CrossRefGoogle Scholar
  20. 20.
    Grosskopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989Google Scholar
  21. 21.
    Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson D (2004) The Storegga Slide: architecture, geometry and slide development. Mar Geol 213:201–234CrossRefGoogle Scholar
  22. 22.
    Halanych KM (2005) Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review. Hydrobiologia 535(536):297–307CrossRefGoogle Scholar
  23. 23.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. 24.
    Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fossa JH, Jonsson R, Rueslatten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206CrossRefGoogle Scholar
  25. 25.
    Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594CrossRefPubMedGoogle Scholar
  26. 26.
    Inagaki F, Nunoura T, Satoshi N, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820CrossRefPubMedGoogle Scholar
  27. 27.
    Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235CrossRefPubMedGoogle Scholar
  28. 28.
    Janse I, Bok J, Zwart G (2004) A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. J Microbiol Methods 57:279–281CrossRefPubMedGoogle Scholar
  29. 29.
    Jurgens G, Glöckner F-O, Amann R, Saano A, Montonen L, Likolammi M, Münster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56PubMedGoogle Scholar
  30. 30.
    Kellogg CA (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88CrossRefGoogle Scholar
  31. 31.
    Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546CrossRefPubMedGoogle Scholar
  32. 32.
    Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. Wiley, New YorkGoogle Scholar
  33. 33.
    Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400CrossRefPubMedGoogle Scholar
  34. 34.
    Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362CrossRefPubMedGoogle Scholar
  35. 35.
    Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMedGoogle Scholar
  36. 36.
    Meunier C, Andersen AC, Bruneaux M, Le Guen D, Terrier P, Leize-Wagner E, Zal F (2010) Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): first discovery of giant hexagonal-bilayer hemoglobin in the former “Pogonophora” group. Comp Biochem Physiol A Mol Integr Physiol 155(1):41–8CrossRefPubMedGoogle Scholar
  37. 37.
    Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher J-P, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858CrossRefPubMedGoogle Scholar
  38. 38.
    Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373PubMedGoogle Scholar
  39. 39.
    Pimenov NV, Savvichev AS, Rusanov II, Lein AY, Ivanov MV (2000) Microbiological processes of the carbon and sulfur cycles at cold methane seeps of the North Atlantic. Microbiology 69:831–843PubMedGoogle Scholar
  40. 40.
    Pouliot J, Galand PE, Lovejoy C, Vincent WF (2009) Vertical structure of archaeal communities and the distribution of ammonia monooxygenase a gene variants in two meromictic High Arctic lakes. Environ Microbiol 11:687–699CrossRefPubMedGoogle Scholar
  41. 41.
    R Development Core T (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  42. 42.
    Rudolph C, Moissl C, Henneberger R, Huber R (2004) Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiol Ecol 50:1–11CrossRefPubMedGoogle Scholar
  43. 43.
    Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45:517–567CrossRefGoogle Scholar
  44. 44.
    Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376CrossRefPubMedGoogle Scholar
  45. 45.
    Sommer S, Linke P, Pfannkuche O, Schleicher T, Schneider V, Deimling J, Reitz A, Haeckel M, Flögel S, Hensen C (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Prog Ser 382:69–86CrossRefGoogle Scholar
  46. 46.
    Southward EC, Schulze A, Gardiner SL (2005) Pogonophora (Annelida): form and function. Hydrobiologia 535–536:227–251CrossRefGoogle Scholar
  47. 47.
    Suzuki M, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630PubMedGoogle Scholar
  48. 48.
    Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  49. 49.
    Takai K, Moser DP, DeFlaun M, Onstott TC, Frederickson JK (2001) Archaeal diversity in waters from Deep South African gold mines. Appl Environ Microbiol 67:5750–5760CrossRefPubMedGoogle Scholar
  50. 50.
    Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K (2004) Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413CrossRefPubMedGoogle Scholar
  51. 51.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  52. 52.
    Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all ? ISME J 2:3–18CrossRefPubMedGoogle Scholar
  53. 53.
    Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach A-L (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384PubMedGoogle Scholar
  54. 54.
    Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Meth 55:155–164CrossRefGoogle Scholar
  55. 55.
    Wu L, Ma K, Li Q, Ke X, Lu Y (2009) Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer. Microb Ecol 58:819–826CrossRefPubMedGoogle Scholar
  56. 56.
    Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cassandre Sara Lazar
    • 1
  • Julie Dinasquet
    • 1
  • Patricia Pignet
    • 1
  • Daniel Prieur
    • 1
  • Laurent Toffin
    • 1
  1. 1.Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Ifremer Centre de Brest, Département Etudes des Environnements ProfondsUniversité de Bretagne OccidentalePlouzanéFrance

Personalised recommendations