Advertisement

Microbial Ecology

, Volume 60, Issue 1, pp 1–14 | Cite as

Feasibility of Removing Surface Deposits on Stone Using Biological and Chemical Remediation Methods

  • A. Polo
  • F. Cappitelli
  • L. Brusetti
  • P. Principi
  • F. Villa
  • L. Giacomucci
  • G. Ranalli
  • C. Sorlini
Environmental Microbiology

Abstract

The study was conducted on alterations found on stone artwork and integrates microbial control and a biotechnological method for the removal of undesirable chemical substances. The Demetra and Cronos sculptures are two of 12 stone statues decorating the courtyard of the Buonconsiglio Castle in Trento (Italy). An initial inspection of the statues revealed putative black crusts and highlighted the microbial contamination causing discoloration. In 2006, the Cultural Heritage Superintendence of Trento commissioned us to study and remove these chemical and biological stains. Stereomicroscopy characterised the stone of the sculptures as oolitic limestone, and infrared analyses confirmed the presence of black crusts. To remove the black crusts, we applied a remediation treatment of sulphate-reducing bacteria, which removes the chemical alteration but preserves the original stone and the patina noble. Using traditional and biomolecular methods, we studied the putative microbial contamination and confirmed the presence of biodeteriogens and chose biocide Biotin N for the removal of the agents causing the discolouration. Denaturing gradient gel electrophoresis fluorescent in situ hybridisation established that Cyanobacteria and green algae genera were responsible for the green staining whereas the black microbial contamination was due to dematiaceous fungi. After the biocide Biotin N treatment, we applied molecular methods and demonstrated that the Cyanobacteria, and most of the green algae and dematiaceous fungi, had been efficiently removed. The reported case study reveals that conservators can benefit from an integrated biotechnological approach aimed at the biocleaning of chemical alterations and the abatement of biodeteriogens.

Keywords

Calcium Oxalate Microbial Contamination Verticillium Black Crust Oolitic Limestone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful for the financial support of the Soprintendenza per i Beni Architettonici, Trento, Italy, and give special thanks go to Arch. Luca de Bonetti for his help throughout this research. The authors also wish to thank Prof. L. Toniolo, Politecnico di Milano, for the chemical analyses.

References

  1. 1.
    Ariño X, Hernandez-Marine M, Saiz-Jimenez C (1997) Colonization of Roman tombs by calcifying Cyanobacteria. Phycologia 36:366–373CrossRefGoogle Scholar
  2. 2.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhk K (1994) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  3. 3.
    Burford EP, Kierans M, GaddG M (2003) Geomycology: fungi in mineral substrata. Mycologist 17:98–107CrossRefGoogle Scholar
  4. 4.
    Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of Cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57(4):633–639CrossRefPubMedGoogle Scholar
  5. 5.
    Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385:172–181CrossRefPubMedGoogle Scholar
  6. 6.
    Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73(17):5671–5675CrossRefPubMedGoogle Scholar
  7. 7.
    Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72(5):3733–3737CrossRefPubMedGoogle Scholar
  8. 8.
    Chapoulie R, Cazenave S, Duttine M (2008) Laser cleaning of historical limestone buildings in Bordeaux appraisal using cathodoluminescence and electron paramagnetic resonance. Environ Sci Pollut Res 15(3):237–243CrossRefGoogle Scholar
  9. 9.
    Commissione Normal (1980) Raccomandazioni Normal B 3/80 Materiali lapidei: campionamento. Roma: C.N.R. - I.C.R.Google Scholar
  10. 10.
    Gauri KL, Bandyopadhyay JK (1999) Carbonate stone chemical behaviour, durability, and conservation. Wiley, New YorkGoogle Scholar
  11. 11.
    Gaylarde PM, Gaylarde CC (2000) Algae and Cyanobacteria on painted buildings in Latin America. Int Biodeterior Biodegrad 46(2):93–97CrossRefGoogle Scholar
  12. 12.
    Gorbushina A, Krumbein WE (2000) Patina (physical and chemical interaction of sub-aerial biofilms with object of art). In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. The role of microbial communities in the degradation and protection of cultural heritage, vol 15. Kluwer Academic/Plenum, New York, pp 105–120Google Scholar
  13. 13.
    Gorbushina A, Krumbein WE, Panina L, Soukharjevski S, Wollenzien U (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–222CrossRefGoogle Scholar
  14. 14.
    Gorbushina AA, Lyalikova NN, Vlasov DY, Khizhnyak TV (2002) Microbial communities on the monuments of Moscow and St. Petersburg: biodiversity and trophic relations. Microbiology 71(3):350–356CrossRefGoogle Scholar
  15. 15.
    Heale JB, Isaac I (1964) Dark pigment formation in Verticillium albo-atru. Nature 202:412–413CrossRefPubMedGoogle Scholar
  16. 16.
    Hernandez-Marine M, Asencio AD, Canals A, Ariño X, Aboal M, Hoffmann L (1999) Discovery of population of the lime-incrusting genus Loriella (Stigomenatales) in Spanish caves. Arch For Hydrobiologie Algol Stud 94:121–138Google Scholar
  17. 17.
    Jurado V, Sanchez-Moral S, Saiz-Jimenez C (2008) Entomogenous fungi and the conservation of the cultural heritage: a review. Int Biodeterior Biodegrad 62:325–330CrossRefGoogle Scholar
  18. 18.
    Kolarik M, Kubatova A, Hulcr J, Pazoutova S (2008) Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb Ecol 55:65–80CrossRefPubMedGoogle Scholar
  19. 19.
    Krumbein WE (1992) Colour change of building stone and their direct and indirect biological causes. In: Delgado Rodriguez J, Henriques F, Telmo Jeremias F (eds) Proceedings of 7th International Congress on Detection and Conservation of Stone, LNEC, Portugal, pp 443–452.Google Scholar
  20. 20.
    Krumbein WE, Diakumaku E (1996) The role of fungi in the deterioration of stone. In: Interactive physical weathering and bioreceptivity study on building stones, monitored by computerized X-ray tomography (CT) as a potential non-destructive research tool. Protection and Conservation of the European Cultural Heritage, Research Report 2, pp 140–170Google Scholar
  21. 21.
    Leznicka S, Strzelczyk A, Wandtychowska D (1988) Removing of fungal stains from stone-works. In: IV International Congress on Deterioration and Conservation of Stone, Vol. 2, Nicolaus Copernicus University, 12–14 September 1988, Torun, pp 102–110Google Scholar
  22. 22.
    Loy A, Horn M, Wagner M (2003) ProbeBase: an online resource for rRNA targeted oligonucleotide probes. Nucleic Acids Res 31:514–516CrossRefPubMedGoogle Scholar
  23. 23.
    Maravelaki-Kalaitzaki P (2005) Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): characterization and origin. Anal Chim Acta 532:187–198CrossRefGoogle Scholar
  24. 24.
    McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451CrossRefGoogle Scholar
  25. 25.
    McNamara C, Perry TD, Bearce KA (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64CrossRefPubMedGoogle Scholar
  26. 26.
    McNamara C, Perry TD, Zinn M, Breuker M, Müller R, Hernandez-Duque G, Mitchell R (2003) Microbial processes in the deterioration of Maya archaeological buildings in southern Mexico. In: Koestler RJ, Koestler VH, Charola AE, Nieto-Fernandez FE (eds) Art, biology and conservation: biodeterioration of works of art. The Metropolitan Museum of Art, New York, pp 248–265Google Scholar
  27. 27.
    Miller AZ, Laiz L, Gonzalez JM, Dionísio A, Macedo MF, Saiz-Jimenez C (2008) Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci Total Environ 405:278–285CrossRefPubMedGoogle Scholar
  28. 28.
    Muyzer G, De Waal EC, Uitierlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700PubMedGoogle Scholar
  29. 29.
    Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885CrossRefPubMedGoogle Scholar
  30. 30.
    Oros-Sichler M, Gomes NCM, Neuber G, Smalla K (2006) A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR–DGGE analysis of soil fungal communities. J Microbiol Methods 65:63–75CrossRefPubMedGoogle Scholar
  31. 31.
    Portillo MC, Gonzalez JM, Saiz-Jimenez C (2008) Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J Appl Microbiol 104:681–691CrossRefPubMedGoogle Scholar
  32. 32.
    Ricci C, Miliani C, Brunetti BG, Sgamellotti A (2006) Non-invasive identification of surface materials on marble artifacts with fiber optic mid-FTIR reflectance spectroscopy. Talanta 69(5):1221–1226CrossRefPubMedGoogle Scholar
  33. 33.
    Rossi Manaresi R (1996) Oxalate patinas and conservation treatments. In: Realini M, Toniolo L (eds) The oxalate films in the conservation of works of art. Proceedings of the 2nd International Symposium, Milan, 25 to 27 March 1996. EDITEAM, Bologna, pp 113–127Google Scholar
  34. 34.
    Saiz-Jimenez C (1995) Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia 11(3):161–175CrossRefGoogle Scholar
  35. 35.
    Scott James A, Untereiner WA, Ewaze JO, Wong B, Doyle D (2007) Baudoinia, a new genus to accommodate Torula compniacensis. Mycologia 99:592–601CrossRefPubMedGoogle Scholar
  36. 36.
    Sterflinger K (1998) Temperature and NaCl tolerance of rock-inhabiting meristematic fungi. Anton Leeuw Int J G 74:271–281CrossRefGoogle Scholar
  37. 37.
    Stomeo F, Gonzalez JM, Saiz-Jimenez C (2007) Analysis of the bacterial communities on paintings and engravings in Doña Trinidad cave (Ardales, Malaga, Spain). Coalition 14:24–27Google Scholar
  38. 38.
    Stomeo F, Portillo MC, Gonzalez JM, Laiz L, Saiz-Jimenez C (2008) Pseudonocardia in white colonizations in two caves with Paleolithic paintings. Int Biodeterior Biodegrad 62:483–486CrossRefGoogle Scholar
  39. 39.
    Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegrad 46(3):251–258CrossRefGoogle Scholar
  40. 40.
    Urzì C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E, Daffonchio D (2001) Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 3(7):471–479CrossRefPubMedGoogle Scholar
  41. 41.
    Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368CrossRefGoogle Scholar
  42. 42.
    Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24(6):255–260CrossRefPubMedGoogle Scholar
  43. 43.
    Wollenzien U, de Hoogb GS, Krumbeina WE, Urzi C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. Polo
    • 1
  • F. Cappitelli
    • 1
  • L. Brusetti
    • 2
  • P. Principi
    • 1
  • F. Villa
    • 1
  • L. Giacomucci
    • 1
  • G. Ranalli
    • 3
  • C. Sorlini
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Alimentari e MicrobiologicheUniversità degli Studi di MilanoMilanItaly
  2. 2.Faculty of Science and TechnologyFree University of Bozen/BolzanoBolzanoItaly
  3. 3.Dipartimento di Scienze e Tecnologie per l’Ambiente e il TerritorioUniversity of MoliseIserniaItaly

Personalised recommendations