Microbial Ecology

, Volume 59, Issue 4, pp 768–775 | Cite as

Hybridization in Endophyte Symbionts Alters Host Response to Moisture and Nutrient Treatments

  • Cyd E. Hamilton
  • Thomas E. Dowling
  • Stanley H. Faeth
Plant Microbe Interactions

Abstract

When a host organism is infected by a symbiont, the resulting symbiotum has a phenotype distinct from uninfected hosts. Genotypic interactions between the partners may increase phenotypic variation of the host at the population level. Neotyphodium is an asexual, vertically transmitted endophytic symbiont of grasses often existing in hybrid form. Hybridization in Neotyphodium rapidly increases the symbiotum’s genomic content and is likely to increase the phenotypic variation of the host. This phenotypic variation is predicted to enhance host performance, especially in stressful environments. We tested this hypothesis by comparing the growth, survival, and resource allocation of hybrid and nonhybrid infected host plants exposed to controlled variation in soil moisture and nutrients. Infection by a hybrid endophyte did not fit our predictions of comparatively higher root and total biomass production under low moisture/low nutrient treatments. Regardless of whether the host was infected by a hybrid or nonhybrid endophyte, both produced significantly higher root/total biomass when both nutrient and moisture were high compared to limited nutrient/moisture treatments. However, infection by hybrid Neotyphodium did result in significantly higher total biomass and host survival compared to nonhybrid infected hosts, regardless of treatment. Endophyte hybridization alters host strategies in response to stress by increasing survival in depauperate habitats and thus, potentially increasing the relative long-term host fitness.

Notes

Acknowledgements

We thank Roberto A. Gaxiola, Marty F. Wojciechowski, and Brian C. Verrelli for editorial comments which greatly improved this document. This research was funded by an NSF grant [EB-0613551 to S.H.F. and T.E.D.).

References

  1. 1.
    Antonovics J, Levin DA (1980) The ecological and genetic consequences of density-dependent regulation in plants. Ann Rev Ecolog Syst 11:411–452CrossRefGoogle Scholar
  2. 2.
    Antonovics J (1994) Ecological genetics of metapopulations: the Silene-Ustilago plant-pathogen system. In: Real LA (ed) Ecological genetics. Princeton University, Princeton, NJ, pp 146–170Google Scholar
  3. 3.
    Hughes AR, Inouye BD, Johnson TJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623CrossRefPubMedGoogle Scholar
  4. 4.
    Hamrick JL, Allard RW (1972) Microgeographical variation in allozyme frequencies in Avena barbata. PNAS 69:2100–2104CrossRefPubMedGoogle Scholar
  5. 5.
    Crawley MJ (ed) (1997) Plant ecology. Blackwell Science, OxfordGoogle Scholar
  6. 6.
    McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593CrossRefGoogle Scholar
  7. 7.
    Pugnaire FI, Valladares F (1999) Handbook of functional ecology. CRC, Baton Rouge, FLGoogle Scholar
  8. 8.
    Alexander HM, Thrall PH, Antonovics J, Jarosz AM, Oudemans PV (1996) Population dynamics and genetics of plant disease: a case study of anther-smut disease. Ecology 77:990–996CrossRefGoogle Scholar
  9. 9.
    Cheplick GP (2006) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ Exp Bot 60:202–210CrossRefGoogle Scholar
  10. 10.
    Dickinson H, Antonovics J (1973) The effects of environmental heterogeneity on the genetics of finite populations. Genetics 73:713–735PubMedGoogle Scholar
  11. 11.
    Faeth SH (2009) Asexual fungal symbionts alter reproductive allocation and herbivory over time in their native perennial grass hosts. Am Nat 173:554–565CrossRefPubMedGoogle Scholar
  12. 12.
    Cheplick GP (2003) Evolutionary significance of genotypic variation in developmental reaction norms for a perennial grass under competitive stress. Evol Ecol 17:175–196CrossRefGoogle Scholar
  13. 13.
    Cheplick GP, Cho R (2003) Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol 158:183–191Google Scholar
  14. 14.
    Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724CrossRefGoogle Scholar
  15. 15.
    Sanders IR (2002) Ecology and evolution of multigenomic arbuscular mycorrhizal fungi. Am Nat 160:S128CrossRefPubMedGoogle Scholar
  16. 16.
    Selosse MA, Schardl CL (2007) Fungal endophytes of grasses: hybrids rescued by vertical transmission? An evolutionary perspective. New Phytol 173:452–458CrossRefPubMedGoogle Scholar
  17. 17.
    Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass-endophyte symbiosis. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  18. 18.
    Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland, MAGoogle Scholar
  19. 19.
    Dowling TE, Demarais BD (1993) Evolutionary significance of introgressive hybridization in cyprinid fishes. Nature 362:444–446CrossRefGoogle Scholar
  20. 20.
    Lewontin RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336CrossRefGoogle Scholar
  21. 21.
    Moon CD, Tapper BA, Scott B (1999) Identification of Epichloë endophytes in planta by a microsatellite-based PCR fingerprinting assay with automated analysis. Appl Environ Microbiol 65:1268–1279PubMedGoogle Scholar
  22. 22.
    Rieseberg LH, Wendel J (2004) Plant speciation—rise of the poor cousins. New Phytol 161:1–21CrossRefGoogle Scholar
  23. 23.
    Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207CrossRefPubMedGoogle Scholar
  24. 24.
    Whitham TG, Martinsen GD, Floate KD, Dungey HS, Potts BM, Keim P (1999) Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology 80:416–428CrossRefGoogle Scholar
  25. 25.
    Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216CrossRefPubMedGoogle Scholar
  26. 26.
    Arnold ML (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol 13:997–1007CrossRefPubMedGoogle Scholar
  27. 27.
    Brasier CM, Kirk SA, Delcan J, Cooke DEL, Jung T, Man in't Veld WA (2004) Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol Res 108:1172–1184CrossRefPubMedGoogle Scholar
  28. 28.
    Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization (1999). Proc Natl Acad Sci U S A 96:5878–5883CrossRefPubMedGoogle Scholar
  29. 29.
    Sullivan TJ, Faeth SH (2008) Local adaptation in Festuca arizonica infected by hybrid and nonhybrid Neotyphodium endophytes. Microb Ecol 55:697–704CrossRefPubMedGoogle Scholar
  30. 30.
    Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of Epichloë endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208CrossRefPubMedGoogle Scholar
  31. 31.
    Moon CD, Miles CO, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711CrossRefGoogle Scholar
  32. 32.
    Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467CrossRefPubMedGoogle Scholar
  33. 33.
    Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873CrossRefPubMedGoogle Scholar
  34. 34.
    Hamilton CE, Faeth SH, Dowling TE (2009) Distribution of hybrid fungal symbionts and environmental stress. Microb Ecol 58:408–413CrossRefPubMedGoogle Scholar
  35. 35.
    Bacon CW, White JFJ (eds) (1993) Biotechnology of endophytic fungi of grasses. CRC, Boca Raton, FLGoogle Scholar
  36. 36.
    Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Pl and Soil 227:115–126CrossRefGoogle Scholar
  37. 37.
    Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268CrossRefGoogle Scholar
  38. 38.
    Morse LJ, Faeth SH, Day TA (2007) Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Funct Ecol 21:813–822CrossRefGoogle Scholar
  39. 39.
    Saikkonen K, Helander M, Faeth SH (2004) Fungal endophytes: hitch-hikers of the green world. In: Gillings M, Holmes A (eds) Plant microbiology. Routledge, UK, pp 77–95Google Scholar
  40. 40.
    Hesse U, Schoberlein W, Wittenmayer L, Forster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58:407–415CrossRefGoogle Scholar
  41. 41.
    Malinowski DP, Belesky DP, Hill NS, Baligar VC, Fedders JM (1998) Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue (Festuca arundinacea) Schreb. Pl and Soil 198:53–61CrossRefGoogle Scholar
  42. 42.
    Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60CrossRefGoogle Scholar
  43. 43.
    Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590CrossRefGoogle Scholar
  44. 44.
    Van Hecke MM, Treonis AM, Kaufman JR (2005) How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Pl and Soil 275:101–109CrossRefGoogle Scholar
  45. 45.
    Schulthess FM, Faeth SH (1998) Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia 90:569–578CrossRefGoogle Scholar
  46. 46.
    Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67CrossRefGoogle Scholar
  47. 47.
    Neil KL, Tiller RL, Faeth SH (2003) Big sacaton and endophyte-infected Arizona fescue germination under water stress. J Range Manag 56:616–622CrossRefGoogle Scholar
  48. 48.
    Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428CrossRefPubMedGoogle Scholar
  49. 49.
    Köchy M, Wilson SD (2001) Nitrogen deposition and forest expansion in the northern Great Plains. J Ecol 89:807–817CrossRefGoogle Scholar
  50. 50.
    Sullivan TJ, Faeth SH (2004) Gene flow in the endophyte Neotyphodium and implications for coevolution with Festuca arizonica. Mol Ecol 13:649–656CrossRefPubMedGoogle Scholar
  51. 51.
    Leuchtmann A, Clay K (1990) Isozyme variation in the Acremonium/Epichloë fungal endophyte complex. Phytopathology 80:1133–1139CrossRefGoogle Scholar
  52. 52.
    Schardl CL, Leuchtmann A, Tsai H-F, Collett MA, Watt DM, Scott B (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 163:1307–1317Google Scholar
  53. 53.
    Tsai H-F, Liu J-S, Staben C, Christensen MJ, Latch GCM, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci USA 91:2542–2546CrossRefPubMedGoogle Scholar
  54. 54.
    Aber JD, Magille A, Boone R, Melillo JM, Steudler P (1993) Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol Appl 3:156–166CrossRefGoogle Scholar
  55. 55.
    Zar JH (1999) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle River, NJ, USAGoogle Scholar
  56. 56.
    Andrews DF, Pregibon D (1978) Finding the outliers that matter. J Roy Statist Soc Ser B 40:85–93Google Scholar
  57. 57.
    Cox DR (1972) Regression models and life-tables. J Roy Statist Soc Ser B 34:187–220Google Scholar
  58. 58.
    Pyke DA, Thompson JN (1986) Statistical analysis of survival and removal rate experiments. Ecology 67:240–245CrossRefGoogle Scholar
  59. 59.
    Ehdaie B, Hall AE, Farquhar GD, Nguyen HT, Waines JG (1991) Water-use efficiency and carbon isotope discrimination in wheat. Crop Sci 31:1282CrossRefGoogle Scholar
  60. 60.
    Craine JM (2005) Reconciling plant strategy theories of Grime and Tilman. J Ecol 93:1041–1052CrossRefGoogle Scholar
  61. 61.
    Gadgil M, Solbrig OT (1972) The concept of r- and K-selection: evidence from wild flowers and some theoretical considerations. Am Nat 106:14–31CrossRefGoogle Scholar
  62. 62.
    Antonovics J (1976) The input from population genetics: "the new ecological genetics". Syst Bot 1:233–245CrossRefGoogle Scholar
  63. 63.
    Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. PNAS 102:12465–12470CrossRefPubMedGoogle Scholar
  64. 64.
    Faeth SH, Shochat E (2009) Inherited microbial symbionts in a native grass shift relative abundances, diversity and community structure of associated arthropod communities. Ecol Monogr (in press)Google Scholar
  65. 65.
    Dawkins R (1972) The selfish gene. Oxford University Press, Oxford, UKGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cyd E. Hamilton
    • 1
  • Thomas E. Dowling
    • 1
  • Stanley H. Faeth
    • 2
  1. 1.Arizona State UniversitySchool of Life SciencesTempeUSA
  2. 2.Department of BiologyUniversity of North CarolinaGreensboroUSA

Personalised recommendations