Microbial Ecology

, Volume 59, Issue 3, pp 574–587 | Cite as

Effect of the Earthworms Lumbricus terrestris and Aporrectodea caliginosa on Bacterial Diversity in Soil

  • Taras Y. NechitayloEmail author
  • Michail M. Yakimov
  • Miguel Godinho
  • Kenneth N. Timmis
  • Elena Belogolova
  • Boris A. Byzov
  • Alexander V. Kurakov
  • David L. Jones
  • Peter N. Golyshin
Soil Microbiology


Earthworms ingest large amounts of soil and have the potential to radically alter the biomass, activity, and structure of the soil microbial community. In this study, the diversity of eight bacterial groups from fresh soil, gut, and casts of the earthworms Lumbricus terrestris and Aporrectodea caliginosa were studied by single-strand conformation polymorphism (SSCP) analysis using both newly designed 16S rRNA gene-specific primer sets targeting Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Firmicutes and a conventional universal primer set for SSCP, with RNA and DNA as templates. In parallel, the study of the relative abundance of these taxonomic groups in the same samples was performed using fluorescence in situ hybridization. Bacteroidetes, Alphaproteobacteria, and Betaproteobacteria were predominant in communities from the soil and worm cast samples. Representatives of classes Flavobacteria and Sphingobacteria (Bacteroidetes) and Pseudomonas spp. (low-abundant Gammaproteobacteria) were detected in soil and worm cast samples with conventional and taxon-targeting SSCP and through the sequence analysis of 16S rRNA clone libraries. Physiologically active unclassified Sphingomonadaceae (Alphaproteobacteria) and Alcaligenes spp. (Betaproteobacteria) also maintained their diversities during transit through the earthworm intestine and were found on taxon-targeting SSCP profiles from the soil and worm cast samples. In conclusion, our results suggest that some specific bacterial taxonomic groups maintain their diversity and even increase their relative numbers during transit through the gastrointestinal tract of earthworms.


Firmicutes Bacteroidetes Gammaproteobacteria Alphaproteobacteria Betaproteobacteria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Union Project “Biotic and Abiotic Mechanisms of TSE Infectivity Retention and Dissemination in Soil” TSE-SOIL-FATE (QLRT-2001-02493). K.N.T thanks the Fonds der Chemischen Industrie for generous support. B.A.B. and A.V.K. acknowledge the support of the Russian Foundation for Basic research (RFFI grant 06-04-48557). P.N.G. acknowledges the support from BiotechGenoMik project of the Federal Ministry for Science and Education (BMBF).

Supplementary material

248_2009_9604_MOESM1_ESM.pdf (6 kb)
Supplementary Tables (PDF 5 kb)
248_2009_9604_MOESM2_ESM.pdf (44 kb)
Figure S1 (PDF 45 kb)
248_2009_9604_MOESM3_ESM.pdf (255 kb)
Supplementary SSCP Analysis (PDF 260 kb)


  1. 1.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST & PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. 2.
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  3. 3.
    Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741CrossRefPubMedGoogle Scholar
  4. 4.
    Ashelford KE, Weightman AJ, Fry JC (2002) PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res 30:3481–3489CrossRefPubMedGoogle Scholar
  5. 5.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920CrossRefPubMedGoogle Scholar
  6. 6.
    Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 80:81–84Google Scholar
  7. 7.
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2003) GenBank. Nucleic Acids Res 31:23–27CrossRefPubMedGoogle Scholar
  8. 8.
    Berry AE, Chiocchini C, Selby T, Sosio M, Wellington EMH (2003) Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microb Lett 223:15–20CrossRefGoogle Scholar
  9. 9.
    Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943PubMedGoogle Scholar
  10. 10.
    Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231CrossRefGoogle Scholar
  11. 11.
    Brunner E, Munzel U (2000) The nonparametric Behrens–Fisher problem: asymptotic theory and a small-sample approximation. Biometrical J 42:17–25CrossRefGoogle Scholar
  12. 12.
    Byzov BA, Nechitaylo TY, Bumazhkin BK, Kharin SA, Kurakov AV, Golyshin PN, Zvyagintsev DG (2009) Cultivable microorganisms from digestive tract of earthworms. Microbiol 79:404–413Google Scholar
  13. 13.
    Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35(Database issue):D169–D172. doi: 101093/nar/gkl889 CrossRefPubMedGoogle Scholar
  14. 14.
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443CrossRefPubMedGoogle Scholar
  15. 15.
    Contreras E (1980) Studies on the intestinal actinomycete flora of Eisenia lucens (Annelida, Oligochaeta). Pedobiologia 20:411–416Google Scholar
  16. 16.
    Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444PubMedGoogle Scholar
  17. 17.
    Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189CrossRefPubMedGoogle Scholar
  18. 18.
    Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247CrossRefGoogle Scholar
  19. 19.
    Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L (Oligochaeta: Lumbricidae). FEMS Microb Ecol 48:187–197CrossRefGoogle Scholar
  20. 20.
    Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668CrossRefPubMedGoogle Scholar
  21. 21.
    Furlong MA, Singleton DR, Coleman DC, Whitman WB (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol 68:1265–1279CrossRefPubMedGoogle Scholar
  22. 22.
    Helms J, Munzel U (2007) Nonparametric multiple comparisons.
  23. 23.
    Héry M, Singer AC, Kumaresan D, Bodrossy L, Stalis-Pavese N, Prosser J, Thompson IP, Murrel JC (2008) Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill soil. ISME J 2:92–104CrossRefPubMedGoogle Scholar
  24. 24.
    Hollander M, Wolfe DA (1999) Nonparametric statistical inference. Wiley, New YorkGoogle Scholar
  25. 25.
    Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL (2005) Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 55:1255–1265CrossRefPubMedGoogle Scholar
  26. 26.
    Horn MA, Mertel R, Gehre M, Kastner M, Drake HL (2006) In vivo emission of dinitrogen by earthworms via denitrifying bacteria in the gut. Appl Environ Microbiol 72:1013–1018CrossRefPubMedGoogle Scholar
  27. 27.
    Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669CrossRefPubMedGoogle Scholar
  28. 28.
    Ihssen J, Horn MA, Matthies C, Gößner A, Schramm A, Drake HL (2003) N2O-producing microorganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Appl Environ Microbiol 69:1655–1661CrossRefPubMedGoogle Scholar
  29. 29.
    Karsten GR, Drake HL (1995) Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol 61:1039–1044PubMedGoogle Scholar
  30. 30.
    Karsten GR, Drake HL (1997) Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Appl Environ Microbiol 63:1878–1882PubMedGoogle Scholar
  31. 31.
    Khomyakov NV, Kharin SA, Nechitaylo TY, Golyshin PN, Kurakov AV, Byzov BA, Zvyagintsev DG (2007) Reaction of microorganisms to the digestive fluid of the earthworms. Microbiol 76:55–65CrossRefGoogle Scholar
  32. 32.
    Kristufek V, Ravasz K, Pizl V (1993) Actinomycete communities in earthworm guts and surrounding soil. Pedobiologia 37:379–384Google Scholar
  33. 33.
    Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621PubMedGoogle Scholar
  34. 34.
    Lane DJ, Pace B, Olson GJ, Stahl DA, Sagin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci U S A 82:6955–6959CrossRefPubMedGoogle Scholar
  35. 35.
    Loy A, Horn M, Wagner M (2003) ProbeBase—an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31:514–516CrossRefPubMedGoogle Scholar
  36. 36.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer K-H, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081CrossRefPubMedGoogle Scholar
  37. 37.
    Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K-H (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga–Flavobacter–Bacteroides in the natural environment. Microbiol 142:1097–1106CrossRefGoogle Scholar
  38. 38.
    Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600Google Scholar
  39. 39.
    Matthies C, Griesshammer A, Schmittroth M, Drake HL (1999) Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N2O) by earthworms obtained from garden and forest soils. Appl Environ Microbiol 65:3599–3604PubMedGoogle Scholar
  40. 40.
    Meier H, Amann R, Ludwig W, Schleifer K-H (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Syst Appl Microbiol 22:186–196PubMedGoogle Scholar
  41. 41.
    Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008) Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2:379–392CrossRefPubMedGoogle Scholar
  42. 42.
    Nechitaylo TY, Timmis KN, Golyshin PN (2009) ‘Candidatus Lumbricincola’, a novel lineage of uncultured Mollicutes from earthworms of family Lumbricidae. Environ Microbiol 11:1016–1026CrossRefPubMedGoogle Scholar
  43. 43.
    Neef A (1997) Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. Ph.D. thesis, Technische Universität MünchenGoogle Scholar
  44. 44.
    Omodeo P (1998) History of Clitellata. Ital J Zool 65:51–73CrossRefGoogle Scholar
  45. 45.
    Pedersen JC, Hendriksen NB (1993) Effect of passage through the intestinal tract of detritovore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol Fertil Soils 16:227–232CrossRefGoogle Scholar
  46. 46.
    R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Google Scholar
  47. 47.
    Roller C, Wagner M, Amann R, Ludwig W, Schleifer K-H (1994) In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiol 140:2849–2858CrossRefGoogle Scholar
  48. 48.
    Royston P (1982) Algorithm AS181: the W test for normality. Appl Stat 31:176–180CrossRefGoogle Scholar
  49. 49.
    Sambrook J, Russel DW (2001) Preparation and analysis of eukaryotic genomic DNA. In: Sambrook J, Russel DW (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, p 6.22Google Scholar
  50. 50.
    Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp). Appl Env Microbiol 69:6007–6017CrossRefGoogle Scholar
  51. 51.
    Schönholzer F, Hahn D, Zarda B, Zeyer J (2002) Automated image analysis and in situ hybridization as tools to study bacterial populations in food resources, gut and cast of Lumbricus terrestris L. J Microbiol Meth 48:53–68CrossRefGoogle Scholar
  52. 52.
    Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876PubMedGoogle Scholar
  53. 53.
    Singleton DR, Hendrix PF, Coleman DC, Whitman WB (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35:1547–1555CrossRefGoogle Scholar
  54. 54.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  55. 55.
    Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedGoogle Scholar
  56. 56.
    Toyota K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia foetida. Biol Fertil Soils 31:187–190CrossRefGoogle Scholar
  57. 57.
    van Borm S, Buschinger A, Boomsma JJ, Billen J (2002) Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc Biol Sci 269:2023–2027CrossRefPubMedGoogle Scholar
  58. 58.
    Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiol 143:3913–3919CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Taras Y. Nechitaylo
    • 1
    Email author
  • Michail M. Yakimov
    • 2
  • Miguel Godinho
    • 1
  • Kenneth N. Timmis
    • 1
    • 4
  • Elena Belogolova
    • 1
  • Boris A. Byzov
    • 3
  • Alexander V. Kurakov
    • 3
  • David L. Jones
    • 5
  • Peter N. Golyshin
    • 1
    • 6
  1. 1.Environmental Microbiology LaboratoryHelmholtz Center for Infection ResearchBraunschweigGermany
  2. 2.Istituto per L’Ambiente Marino CostieroIAMC-CNRMessinaItaly
  3. 3.Department of Soil Biology, Faculty of Soil ScienceMoscow State Lomonosov UniversityMoscowRussia
  4. 4.Institute of Microbiology, BiozentrumTechnical University of BraunschweigBraunschweigGermany
  5. 5.School of the Environment and Natural ResourcesBangor UniversityGwyneddUK
  6. 6.School of Biological SciencesBangor UniversityGwyneddUK

Personalised recommendations