Microbial Ecology

, Volume 59, Issue 1, pp 158–173 | Cite as

Species Composition of Bacterial Communities Influences Attraction of Mosquitoes to Experimental Plant Infusions

  • Loganathan Ponnusamy
  • Dawn M. Wesson
  • Consuelo Arellano
  • Coby Schal
  • Charles S. AppersonEmail author
Microbiology of Aquatic Systems


In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteobacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation time.


Bacterial Community Operational Taxonomic Unit Fermentation Time Gravid Female Leaf Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Partial support for our research was provided by the NIH-NIAID through cooperative agreement U01-AI-58303-01, the Blanton J. Whitmire endowment at North Carolina State University, and the Bill and Melinda Gates Foundation. We thank Luma Abu Ayyash for excellent assistance in the laboratory.

Supplementary material

248_2009_9565_MOESM1_ESM.doc (50 kb)
Supplemental Table 1 Bacterial phylotypes identified* from predominant 16S rDNA-DGGE bands from BL infusions. Phylogenetic affiliations were determined based on classification of band sequences in a neighbor-joining phylogenetic tree (DOC 50 kb)
248_2009_9565_MOESM2_ESM.doc (60 kb)
Supplemental Table 2 Bacterial phylotypes identified* from predominant 16S rDNA-DGGE bands from WOL infusions. Phylogenetic affiliations were determined based on classification of band sequences in a neighbor-joining phylogenetic tree (DOC 60 kb)
248_2009_9565_MOESM3_ESM.doc (38 kb)
Supplemental Table 3 Results of mixed-model ANOVA of effects of trial and fermentation time (day) on bacterial cell growth and diversity in BL infusions (DOC 38 kb)
248_2009_9565_MOESM4_ESM.doc (38 kb)
Supplemental Table 4 Effects of infusion concentration§ and fermentation time on bacterial species diversity in WOL infusions (DOC 37 kb)
248_2009_9565_MOESM5_ESM.doc (30 kb)
Supplemental Table 5 Correlation matrix for infusion-associated variables used in principal components analysis (DOC 29.5 kb)


  1. 1.
    Allan SA, Bernier UR, Kline DL (2005) Evaluation of oviposition substrates and organic infusions on collection of Culex in Florida. J Am Mosq Control Assoc 21:268–273CrossRefPubMedGoogle Scholar
  2. 2.
    Allan SA, Kline DL (1995) Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Chem Ecol 21:1847–1860CrossRefGoogle Scholar
  3. 3.
    Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565CrossRefPubMedGoogle Scholar
  4. 4.
    Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, van der Gast CJ (2007) Larger islands house more bacterial taxa. Science 308:1884CrossRefGoogle Scholar
  5. 5.
    Benzon GL, Apperson CS (1988) Reexamination of chemically mediated oviposition behavior in Aedes aegypti (L.) (Diptera: Culicidae). J Med Entomol 25:158–164PubMedGoogle Scholar
  6. 6.
    Chadee DD, Mendis C, Beier JC (1993) Diel oviposition periodicity of Anopheline mosquitoes (Diptera: Culicidae) from the Americas: Anopheles albimanus Wiedemann and Anopheles freeborni Aitken. Ann Trop Med Parasitol 87:501–507PubMedGoogle Scholar
  7. 7.
    Colton YM, Chadee DD, Severson DW (2003) Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17:195–204CrossRefPubMedGoogle Scholar
  8. 8.
    Draper NR, Smith H (1981) Applied regression analysis. Wiley, New YorkGoogle Scholar
  9. 9.
    Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178CrossRefPubMedGoogle Scholar
  10. 10.
    Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230CrossRefPubMedGoogle Scholar
  11. 11.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  12. 12.
    Hasselschwert D, Rockett CL (1988) Bacteria as ovipositional attractants for Aedes aegypti (Diptera: Culicidae). Great Lakes Entomol 21:163–168Google Scholar
  13. 13.
    Hazard EI, Mayer MS, Savage KE (1967) Attraction and oviposition stimulation of gravid female mosquitoes by bacteria isolated from hay infusions. Mosq News 27:133–136Google Scholar
  14. 14.
    Hoefel D, Monis PT, Grooby WL, Andrews S, Saint CP (2005) Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl Environ Microbiol 71:6479–6488CrossRefPubMedGoogle Scholar
  15. 15.
    Ikeshoji T, Ichimoto I, Konish J, Naoshima Y, Ueda H (1979) 7, 11-Dimethyl octadecane—an oviposition attractant for Aedes aegypti produced by Pseudomonas aeruginosa on capric acid substrate. J Pestic Sci 4(187):194Google Scholar
  16. 16.
    Isoe J, Beehler JW, Millar JG, Mulla MS (1995) Oviposition responses of Culex tarsalis and Culex quinquefasciatus to aged Bermuda grass infusions. J Am Mosq Control Assoc 11:39–44PubMedGoogle Scholar
  17. 17.
    Isoe J, Millar JG (1995) Characterization of factors mediating oviposition site choice by Culex tarsalis. J Am Mosq Control Assoc 11:21–28PubMedGoogle Scholar
  18. 18.
    Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  19. 19.
    Kadlec RH, Knight RL (1996) Treatment wetlands. CRC/Lewis, Boca Raton 893 ppGoogle Scholar
  20. 20.
    Kaufman MG, Walker ED, Smith TW, Merritt RW, Klug MJ (1999) Effects of larval mosquitoes (Aedes triseriatus) and stemflow on microbial community dynamics in container habitats. Appl Environ Microbiol 65:2661–2673PubMedGoogle Scholar
  21. 21.
    Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100PubMedGoogle Scholar
  22. 22.
    Maw MG (1970) Capric acid as a larvicide and an oviposition stimulant for mosquitoes. Nature 227:1154–1155CrossRefPubMedGoogle Scholar
  23. 23.
    Mboera LEG, Knols BGJ, Braks MAH, Takken W (2000) Comparison of carbon dioxide-baited trapping systems for sampling outdoor mosquito populations in Tanzania. Med Vet Entomol 14:257–263CrossRefPubMedGoogle Scholar
  24. 24.
    Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376PubMedGoogle Scholar
  25. 25.
    Millar JG, Chaney JD, Mulla MS (1992) Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J Am Mosq Control Assoc 8:11–17PubMedGoogle Scholar
  26. 26.
    Min BR, Pinchak WE, Merkel R, Walker S, Tomita G, Anderson RC (2008) Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens. Sci Res Essays 3:66–73Google Scholar
  27. 27.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  28. 28.
    Neter T, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models, 4th edn. McGraw-Hill, BostonGoogle Scholar
  29. 29.
    Nguyen TTH, Su TY, Mulla MS (1999) Bacteria and mosquito abundance in microcosms enriched with organic matter and treated with a Bacillus thuringiensis subsp. israelensis formulation. J Vector Ecol 24:191–201PubMedGoogle Scholar
  30. 30.
    Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730PubMedGoogle Scholar
  31. 31.
    Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proc Natl Acad Sci U S A 105:9262–9267CrossRefPubMedGoogle Scholar
  32. 32.
    Ponnusamy L, Xu N, Stav G, Wesson DM, Schal C, Apperson CS (2008) Diversity of bacterial communities in container habitats of mosquitoes. Microb Ecol 56:593–603CrossRefPubMedGoogle Scholar
  33. 33.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  34. 34.
    Rawlins SC, Martinez R, Wiltshire S, Legall G (1998) A comparison of surveillance systems for the dengue vector Aedes aegypti in Port of Spain, Trinidad. J Am Mosq Control Assoc 14:131–136PubMedGoogle Scholar
  35. 35.
    Reasoner DJ, Geldreicht EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedGoogle Scholar
  36. 36.
    Reiter P, Amador MA, Colon N (1991) Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. J Am Mosq Control Assoc 7:52–55PubMedGoogle Scholar
  37. 37.
    Rejmankova E, Higashi R, Grieco JJ, Achee NN, Roberts D (2005) Volatile substances from larval habitats mediate species-specific oviposition in Anopheles mosquitoes. J Med Entomol 42:95–103CrossRefPubMedGoogle Scholar
  38. 38.
    Rejmankova E, Roberts DR, Manguin S, Pope KO, Komárek J, Post RA (1996) Anopheles albimanus (Diptera: Culicidae) and cyanobacteria: an example of larval habitat selection. Environ Entomol 25:1058–1067PubMedGoogle Scholar
  39. 39.
    Ritchie SA (1984) Hay infusion and isopropyl alcohol-baited CDC light trap—a simple effective trap for gravid Culex mosquitoes. Mosq News 44:404–407Google Scholar
  40. 40.
    Rivera ING, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR (2003) Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environ Microbiol 5:599–606CrossRefPubMedGoogle Scholar
  41. 41.
    Sanford A, Morgan J, Evans D, Ducklow H (2001) Bacterioplankton dynamics in estuarine mesocosms: effects of tank shape and size. Microbiol Ecol 41:45–55Google Scholar
  42. 42.
    Sant’Ana AL, Rogue RA, Eiras AE (2006) Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). J Med Entomol 43:214–220CrossRefGoogle Scholar
  43. 43.
    Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883CrossRefGoogle Scholar
  44. 44.
    Schallenberg M, Kalff J, Rasmussen JB (1989) Solutions to problems involving enumeration of sediment bacteria by direct counts. Appl Environ Microbiol 55:1214–1219PubMedGoogle Scholar
  45. 45.
    Shannon C, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  46. 46.
    Singleton DR, Furlong MA, Rathburn SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376CrossRefPubMedGoogle Scholar
  47. 47.
    Sinsabaugh RL, Linkins AE (1990) Enzymatic and chemical analysis of particulate organic matter from a boreal river. Freshwater Biol 23:301–309CrossRefGoogle Scholar
  48. 48.
    Sumba LA, Guda TO, Deng AL, Hassanali A, Beier JC, Knols BGJ (2004) Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci 24:260–265CrossRefGoogle Scholar
  49. 49.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  50. 50.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  51. 51.
    Trexler JD, Apperson CS, Schal C (1998) Laboratory and field evaluations of oviposition responses of Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) to oak leaf infusions. J Med Entomol 35:967–976PubMedGoogle Scholar
  52. 52.
    Trexler JD, Apperson CS, Zurek L, Gemeno C, Schal C, Kaufman M, Walker E, Watson DW, Wallace L (2003) Role of bacteria in mediating oviposition responses of Aedes albopictus (Diptera: Culicidae). J Med Entomol 40:841–848CrossRefPubMedGoogle Scholar
  53. 53.
    Vázquez-Martínez MG, Rodríguez MH, Arredondo-Jiménez JI, Méndez-Sánchez JD, Bond-Compeán JG, Gold-Morgan M (2002) Cyanobacteria associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in Southern Mexico. J Med Entomol 39:825–832CrossRefPubMedGoogle Scholar
  54. 54.
    Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446PubMedGoogle Scholar
  55. 55.
    Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Loganathan Ponnusamy
    • 1
  • Dawn M. Wesson
    • 2
  • Consuelo Arellano
    • 3
  • Coby Schal
    • 1
  • Charles S. Apperson
    • 1
    Email author
  1. 1.Department of EntomologyNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Tropical MedicineTulane UniversityNew OrleansUSA
  3. 3.Department of StatisticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations