Microbial Ecology

, 58:865 | Cite as

Morphological, Bacterial, and Secondary Metabolite Changes of Aplysina aerophoba upon Long-Term Maintenance Under Artificial Conditions

  • Berna Gerçe
  • Thomas Schwartz
  • Matthias Voigt
  • Sebastian Rühle
  • Silke Kirchen
  • Annika Putz
  • Peter Proksch
  • Ursula Obst
  • Christoph Syldatk
  • Rudolf Hausmann
Microbiology of Aquatic Systems


The aim of this study was to analyze successional changes in the bacterial community over a period of 6 months of cultivation of Aplysina aerophoba sponges under different artificial cultivation conditions by use of denaturing gradient gel electrophoresis (DGGE). The cultivation conditions varied concerning the water temperature (20 ± 2 °C and 25 ± 2 °C) of the aquaria, additional illumination of one aquarium, and feeding of the sponges. Amplicons from DGGE separation of dominant colonizing or variably appearing bacteria were sequenced and aligned for taxonomical identification. In addition, secondary metabolites typically found in A. aerophoba were analyzed to investigate changes in the natural product profile during cultivation. The cultivation of sponges under any given condition did not lead to a depletion of their bacterial community in the course of the experiment. On the contrary, the distinctive set of associated bacteria was maintained in spite of a dramatic loss of biomass and morphological degradation during the cultivation period. Generally, all sequences obtained from the DGGE gels were related to bacteria of five phyla: Actinobacteria, Cyanobacteria, α-Proteobacteria, γ-Proteobacteria, and Chloroflexi. Despite the overall stability of the bacterial community in A. aerophoba, an unambiguous variability was detected for the CyanobacteriaA. aerophoba clone TK09”. This variability was ascribed to the predominant light conditions. The analysis of the metabolic pattern revealed that the concentration of a class of characteristic-brominated compounds typically found in A. aerophoba, like aeroplysinin-1, aerophobin-1, aerophobin-2, and isofistularin-3, increased over the 6 months of cultivation.


Sponge Bacterial Community Actinobacteria Chloroflexi Sponge Tissue 



We gratefully acknowledge support by the Institute “Ruđer Bošković” in Rovinj, Croatia, in the collection of samples of marine sponges. This work was supported by the German Federal Ministry of Education and Research as part of the research network BIOTECmarin (03F0414G).


  1. 1.
    Bergquist PR (1978) Sponges. University of California Press: Berkeley & Los AngelesGoogle Scholar
  2. 2.
    Van Soest RWM (1996) Porifera. In: Westheide R, Rieger R (eds) Spezielle zoologie, Teil 1: Einzeller und wirbellose tiere. Gustav Fischer, New York, pp 98–119Google Scholar
  3. 3.
    Ruppert EE, Barnes RD (1994) Sponges and placozoans. In: Ruppert EE, Barnes RD (eds) Invertebrate zoology. Saunders College, Philadelphia, pp 68–94Google Scholar
  4. 4.
    Friedrich AB, Fischer I, Proksch P, Hacker H, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113CrossRefGoogle Scholar
  5. 5.
    Wilkinson CR, Garrone R, Vacelet J (1984) Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc R Soc B 220:519–528CrossRefGoogle Scholar
  6. 6.
    Wehrl M, Steinert M, Hentschel U (2007) Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365CrossRefPubMedGoogle Scholar
  7. 7.
    Wilkinson CR (1978) Microbial associations in sponges. III. Ultrastructure of in situ associations in coral reef sponges. Mar Biol 49:177–185CrossRefGoogle Scholar
  8. 8.
    Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177CrossRefPubMedGoogle Scholar
  9. 9.
    Ribes M, Coma R, Gili J-M (1999) Seasonal variation of particulate organic carbon, dissolved organic carbon and the contribution of microbial communities to the live particulate organic carbon in a shallow near-bottom ecosystem at the northwestern Mediterranean sea. J Plankton Res 21:1077–1100CrossRefGoogle Scholar
  10. 10.
    Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, and Horn M (2003). Microbial diversity of marine sponges. In: Müller WEG (ed), Marine molecular biotechnology-Sponges (Porifera), Springer-Verlag, Berlin, Heidelberg 59–88Google Scholar
  11. 11.
    Wilkinson CR, Nowak M, Austin B, and Colwell RR (1981) Specifity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21CrossRefGoogle Scholar
  12. 12.
    Fieseler L, Horn M, Wagner M, and Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732CrossRefPubMedGoogle Scholar
  13. 13.
    Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, and Imhoff JF (2007) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59:47–63CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6:121–130CrossRefPubMedGoogle Scholar
  15. 15.
    Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Lévi C, Boury-Esnault N (eds) Biologie des spongiaires, vol 291. Colloques Internationaux du C.N.R.S, Paris, pp 373–380Google Scholar
  16. 16.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48CrossRefPubMedGoogle Scholar
  17. 17.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49CrossRefPubMedGoogle Scholar
  18. 18.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61CrossRefPubMedGoogle Scholar
  19. 19.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78CrossRefPubMedGoogle Scholar
  20. 20.
    Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86CrossRefPubMedGoogle Scholar
  21. 21.
    Garson MJ (1994) The biosynthesis of sponge secondary metabolites: why it is important. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 427–440Google Scholar
  22. 22.
    Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1:509–532CrossRefPubMedGoogle Scholar
  23. 23.
    Osinga R, Tramper J, Wijffels RH (1998) Cultivation of marine sponges for metabolite production: application for biotechnology? Trends Biotechnol 16:130–134CrossRefGoogle Scholar
  24. 24.
    Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol Res 119:1–11CrossRefGoogle Scholar
  25. 25.
    Garson MJ, Flowers AE, Webb RI, Charan RD, McCaffrey EJ (1998) A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell Tissue Res 293:365–373CrossRefPubMedGoogle Scholar
  26. 26.
    Turon X, Becerro MA, Uriz MJ (2000) Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301:311–322CrossRefPubMedGoogle Scholar
  27. 27.
    Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol R 71:295–347CrossRefGoogle Scholar
  28. 28.
    Hausmann R, Vitello M, Leitermann F, and Syldatk C (2006) Advances in the production of sponge biomass Aplysina aerophoba - A model sponge for ex situ sponge biomass production. J Biotechnol 124:117–127CrossRefPubMedGoogle Scholar
  29. 29.
    Thoms C, Horn M, Wagner M, Henschel U, Proksch P (2003) Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142:685–692Google Scholar
  30. 30.
    Hoffmann F, Rapp HT, Reitner J (2006) Monitoring microbial community composition by fluorescence in situ hybridization during cultivation of the marine cold-water sponge Geodia barretti. Mar Biotechnol 8:373–379CrossRefPubMedGoogle Scholar
  31. 31.
    Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222CrossRefPubMedGoogle Scholar
  32. 32.
    Webster NS, Cobb RE, Negri AP (2008) Temperature thresholds for bacterial symbiosis with a sponge. ISME J 2:830–842CrossRefPubMedGoogle Scholar
  33. 33.
    Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R (2008) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10:3366–3376CrossRefPubMedGoogle Scholar
  34. 34.
    Klöppel A, Pfannkuchen M, Putz A, Proksch P, Brummer F (2008) Ex situ cultivation of Aplysina aerophoba close to in situ conditions: ecological, biochemical and histological aspects. Mar Ecol 29:259–272CrossRefGoogle Scholar
  35. 35.
    Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440CrossRefPubMedGoogle Scholar
  36. 36.
    Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312CrossRefPubMedGoogle Scholar
  37. 37.
    Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridisation (FISH). Mar Biol 134:461–470CrossRefGoogle Scholar
  38. 38.
    Teeyapant R, Woerdenbag HJ, Kreis P, Hacker J, Wray V, Witte L, Proksch P (1993) Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophoba. Z Naturforsch 48:939–945Google Scholar
  39. 39.
    Ebel R, Brenzinger M, Kunze A, Gross HJ, Proksch P (1997) Wound activation of protoxins in marine sponge Aplysina aerophoba. J Chem Ecol 23:1451–1462CrossRefGoogle Scholar
  40. 40.
    Ciminiello P, Fattorusso E, Forino M, Magno S (1997) Chemistry of Verongida sponges. VIII—bromocompounds from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. Tetrahedron 53:6565–6572CrossRefGoogle Scholar
  41. 41.
    Thoms C, Wolff M, Padmakumar K, Ebel R, Proksch P (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch 59:113–122Google Scholar
  42. 42.
    Teeyapant R, Kreis P, Wray V, Witte L, Proksch P (1993) Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina perversa. Z Naturforsch 48:640–644Google Scholar
  43. 43.
    Zavodnik D (1995) A northern Adriatic centenarian: the marine research station at Rovinj. Helgol Meeresunters 49:441–453CrossRefGoogle Scholar
  44. 44.
    Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  45. 45.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  46. 46.
    Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd: Plymouth, United KingdomGoogle Scholar
  47. 47.
    Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  48. 48.
    Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol 148:1221–1230CrossRefGoogle Scholar
  49. 49.
    Thiel V, Leininger S, Schmaljohann R, Brummer F, Imhoff JF (2007) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54:101–111CrossRefPubMedGoogle Scholar
  50. 50.
    Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643CrossRefPubMedGoogle Scholar
  51. 51.
    Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel-electrophoresis. Nucleic Acids Res 13:3131–3145CrossRefPubMedGoogle Scholar
  52. 52.
    Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951CrossRefPubMedGoogle Scholar
  53. 53.
    Saller U (1990) Formation and construction of asexual buds of the fresh-water sponge Radiospongilla-cerebellata (Porifera, Spongillidae). Zoomorphology 109:295–301CrossRefGoogle Scholar
  54. 54.
    Wilkinson CR, Vacelet J (1979) Transplantation of marine sponges to different conditions of light and current. J Exp Mar Biol Ecol 37:91–104CrossRefGoogle Scholar
  55. 55.
    Thoms C, Ebel R, Proksch P (2006) Activated chemical defense in Aplysina sponges revisited. J Chem Ecol 32:97–123CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Berna Gerçe
    • 1
  • Thomas Schwartz
    • 2
  • Matthias Voigt
    • 1
  • Sebastian Rühle
    • 1
  • Silke Kirchen
    • 2
  • Annika Putz
    • 3
  • Peter Proksch
    • 3
  • Ursula Obst
    • 2
  • Christoph Syldatk
    • 1
  • Rudolf Hausmann
    • 1
  1. 1.Institute of Engineering in Life Sciences, Area II: Technical BiologyUniversity of Karlsruhe (TH)KarlsruheGermany
  2. 2.Department of Microbiology of Natural and Technical Interfaces, Institute for Functional Interfaces (IFG; former ITC-WGT)Forschungszentrum KarlsruheEggenstein-LeopoldshafenGermany
  3. 3.Institute of Pharmaceutical Biology and BiotechnologyHeinrich-Heine UniversityDüsseldorfGermany

Personalised recommendations