Microbial Ecology

, Volume 58, Issue 4, pp 786–807 | Cite as

Microbial Communities in Subpermafrost Saline Fracture Water at the Lupin Au Mine, Nunavut, Canada

  • T. C. OnstottEmail author
  • Daniel J. McGown
  • Corien Bakermans
  • Timo Ruskeeniemi
  • Lasse Ahonen
  • Jon Telling
  • Bruno Soffientino
  • Susan M. Pfiffner
  • Barbara Sherwood-Lollar
  • Shaun Frape
  • Randy Stotler
  • Elizabeth J. Johnson
  • Tatiana A. Vishnivetskaya
  • Randi Rothmel
  • Lisa M. Pratt
Original Article


We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na–Ca–Cl, suboxic, fracture water represents a mixture of geologically ancient brine, ~25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were ~103 cells mL−1. Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.


SO42 Fracture Water Sulfur Isotopic Composition Multiple Displacement Amplification Borehole Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the NASA Astrobiology Institute through award NNA04CC03A to the IPTAI Team codirected by LMP and TCO, through award NCC21275 to Steve D’Hondt of the University of Rhode Island, and through award NCC21274 to Mike Thomashow of Michigan State University. Funding was also provided by the NASA Astrobiology Institute, NAS NRC (Postdoctoral Associateship 0385260) to C.B. We are indebted to Echo Bay Mines Ltd., Kinross Inc. and the staff of Lupin Au Mine for providing logistical support. The research was carried out in cooperation with a project group (Geological Survey of Finland, the University of Waterloo), which is studying groundwater chemistry under deep permafrost conditions and is funded by Posiva Oy, Finland, Svensk kärnbränslehantering (SKB), Sweden, and the Nuclear Waste Management Organization/Ontario Power Generation, Canada.


  1. 1.
    Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335PubMedCrossRefGoogle Scholar
  2. 2.
    Malin MC, Edgett KS, Posiolova LV, McColley SM, Noe Dobrea EZ (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–1577PubMedCrossRefGoogle Scholar
  3. 3.
    Krasnopolsky VA, Maillard JP, Owen TC (2004) Detection of methane in the Martian atmosphere: evidence for life? Icarus 172:537–547CrossRefGoogle Scholar
  4. 4.
    Onstott TC, McGown D, Kessler J, Sherwood Lollar B, Lehmann KK, Clifford SM (2006) Martian CH4: sources, flux and detection. Astrobiology 6:377–395PubMedCrossRefGoogle Scholar
  5. 5.
    Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1024–1045CrossRefGoogle Scholar
  6. 6.
    Geminale A, Formisano V, Giuranna M (2009) Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet Space Sci 56:1194–1203CrossRefGoogle Scholar
  7. 7.
    Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165:253–276PubMedCrossRefGoogle Scholar
  8. 8.
    Schuerger AC, Richards JT, Newcombe DA, Venkateswaran K (2006) Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation. Icarus 181:52–62CrossRefGoogle Scholar
  9. 9.
    Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326PubMedCrossRefGoogle Scholar
  10. 10.
    Bakermans C, Ayala-del-Rio L, Ponder M, Vishnivetskaya TA, Gilichinsky DA, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:125–1291CrossRefGoogle Scholar
  11. 11.
    Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128PubMedCrossRefGoogle Scholar
  12. 12.
    Gilichinsky DA, Wilson GS, Friedmann EI, Mckay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Sprina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311PubMedCrossRefGoogle Scholar
  13. 13.
    Morozova D, Möhlmann D, Wagner D (2007) Survival of methanogenic Archaea from Siberian permafrost under simulated martian thermal conditions. Orig Life Evol Biosph 37:189–200PubMedCrossRefGoogle Scholar
  14. 14.
    Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221PubMedCrossRefGoogle Scholar
  15. 15.
    Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421PubMedCrossRefGoogle Scholar
  16. 16.
    Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79CrossRefGoogle Scholar
  17. 17.
    Boston PJ, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems. Icarus 95:300–308PubMedCrossRefGoogle Scholar
  18. 18.
    Frape SK, Fritz P, McNutt RH (1984) Water–rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48:1617–1627CrossRefGoogle Scholar
  19. 19.
    Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high arctic. Appl Environ Microbiol 73:1532–1543PubMedCrossRefGoogle Scholar
  20. 20.
    Perreault N, Greer C, Andersen D, Tille S, Lacrampe-Couloume G, Sherwood Lollar B, Whyte L (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic. Appl Environ Microbiol 74:6898–6907PubMedCrossRefGoogle Scholar
  21. 21.
    Ruskeeniemi T, Paananen M, Ahonen L, Kaija J, Kuivamaki A, Frape S, Moren L, Degnan P (2002) Permafrost at Lupin: report of phase I. Geological Survey of Finland Nuclear Waste Disposal Research Report YST-112Google Scholar
  22. 22.
    Bullis HR, Hureau RA, Penner BD (1994) Distribution of gold and sulfides at Lupin, Northwest Territories. Econ Geol 89:1217–1227CrossRefGoogle Scholar
  23. 23.
    Rubel AP, Sonntag C, Lippmann J, Pearson FJ, Gautschi A (2002) Solute transport in formations of very low permeability: profiles of stable isotope and dissovled noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland. Geochim Cosmochim Acta 66:1311–1321CrossRefGoogle Scholar
  24. 24.
    Ruskeeniemi T, Ahonen L, Paananen M, Frape S, Stotler R, Hobbs M, Kaija J, Degnan P, Blomqvist R, Jensen M, Lehto K, Moren L, Puigdomenech I, Snellman M (2004) Permafrost at Lupin: report of phase II. Geological Survey of Finland Nuclear Waste Disposal Research Report YST-119Google Scholar
  25. 25.
    Onstott TC, Lin L-H, Davidson M, Mislowack B, Borcsik M, Hall J, Slater GF, Ward J, Sherwood Lollar B, Lippmann-Pipke J, Boice E, Pratt LM, Pfiffner SM, Moser DP, Gihring T, Kieft TL, Phelps TJ, van Heerden E, Litthaur D, DeFlaun M, Rothmel R (2006) The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol J 23:369–414CrossRefGoogle Scholar
  26. 26.
    Ward JA, Slater GF, Moser DP, Lin L-H, Lacrampe-Couloume G, Bonin AP, Davidson M, Hall JA, Mislowack B, Bellamy RES, Onstott TC, Sherwood Lollar B (2004) Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere. Geochim Cosmochim Acta 68:3239–3250CrossRefGoogle Scholar
  27. 27.
    Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118CrossRefGoogle Scholar
  28. 28.
    Kirchman D, Sigda J, Kapuscinski R, Mitchell R (1982) Statistical analysis of the direct count method for enumerating bacteria. Appl Environ Microbiol 44:376–382PubMedGoogle Scholar
  29. 29.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  30. 30.
    Onstott TC, Moser DP, Fredrickson JK, Brockman FJ, Pfiffner SM, Phelps TJ, White DC, Peacock A, Balkwill D, Hoover R, Krumholz LR, Borscik M, Kieft TL, Wilson RB (2003) Indigenous versus contaminant microbes in ultradeep mines. Environ Microbiol 5:1168–1191PubMedCrossRefGoogle Scholar
  31. 31.
    Pfiffner SM, Onstott TC, Ruskeeniemi T, MT T, Bakermans C, McGown D, Chan E, Johnson A, Phelps TJ, Puil ML, Difurio SA, Pratt LM, Stotler R, Frape S, Telling J, Sherwood-Lollar B, Neill I, Zerbin B (2008) Challenges for coring deep permafrost on Earth and Mars. Astrobiology 8:623–638PubMedCrossRefGoogle Scholar
  32. 32.
    DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689PubMedCrossRefGoogle Scholar
  33. 33.
    Giovannoni SJ (1991) The polymerase chain reaction. In: Stackebrandt E, Goodfellow M (eds) Modern microbiological methods: nucleic acids techniques in bacterial systematics. Wiley, New York, pp 177–203Google Scholar
  34. 34.
    Lane DJ (1985) 16S/23S sequencing. In: Stackenbrandt E, Goodfellow M (eds) Modern microbiological methods: nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  35. 35.
    Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220PubMedCrossRefGoogle Scholar
  36. 36.
    Takai K, Moser DP, DeFlaun MF, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760PubMedCrossRefGoogle Scholar
  37. 37.
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  38. 38.
    Cole J, Chai B, Marsh T, Farris R, Wang Q, Kulam S, Chandra S, McGarrell D, Schmidt T, Gairity G, Tiedje J (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  39. 39.
    Altschul SF, Thomas LM, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  40. 40.
    White DC, Ringelberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl DA, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New YorkGoogle Scholar
  41. 41.
    Lytle CA, Gan YDM, Salone K, White DC (2004) Sensitive characterization of microbial ubiquinones from biofilms by electrospray/mas spectrometry. Environ Microbiol 3:265–272CrossRefGoogle Scholar
  42. 42.
    Geyer R, Peacock AD, White DC, Lytle CA, Van Verkel GJ (2004) Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. J Mass Spectrom 39:922–929PubMedCrossRefGoogle Scholar
  43. 43.
    Andrews JN, Wilson GB (1987) The composition of dissolved gases in deep groundwaters and groundwater degassing. Geol Assoc Can Spec Pap 33:245–252Google Scholar
  44. 44.
    Onstott TC (2004) Impact of CO2 injections on deep subsurface microbial ecosystems and potential ramifications for the surface biosphere. In: Thomas DC, Benson SM (eds) The CO2 capture and storage project, vol II. Lawrence Berkeley National Laboratory, Berkeley, pp 1207–1239Google Scholar
  45. 45.
    Lin L-H, Hall JA, Lippmann J, Ward JA, Sherwood-Lollar B, Onstott TC (2005b) Radiolytic H2 in the continental crust: nuclear power for deep subsurface microbial communities. Geochem Geophys Geosys 6:Q07003. doi: 10.1029/2004GC000907 CrossRefGoogle Scholar
  46. 46.
    Lin L-H, Slater G, Sherwood Lollar B, Lacrampe-Couloume G, Onstott TC (2005a) The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim Cosmochim Acta 69:893–903CrossRefGoogle Scholar
  47. 47.
    Bjergbakke E, Draganic ZD, Sehested K, Draganic IG (1989a) Radiolytic products in waters. 1. Computer-simulation of some radiolytic processes in the laboratory. Radiochim Acta 48:65–71Google Scholar
  48. 48.
    Bjergbakke E, Draganic ZD, Sehested K, Draganic IG (1989b) Radiolytic products in waters. 2. Computer-simulation of some radiolytic processes in nature. Radiochim Acta 48:73–77Google Scholar
  49. 49.
    Cai Z, Li X, Katsumura Y, Urabe O (2001) Radiolysis of bicarbonate and carbonate aqueous solutions: product analysis and simulation of radiolytic processes. Nucl Technol 136:231–240Google Scholar
  50. 50.
    Raymond R (2006) Radiolytic destruction of ammonia as a subsurface source of nitrate, B.A. dissertation. Princeton University, Princeton, N.J., USA. p 50Google Scholar
  51. 51.
    Bruchert V, Pratt LM (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrews Bay, Florida. Geochim Cosmochim Acta 60:2325–2332CrossRefGoogle Scholar
  52. 52.
    Lefticariu L, Pratt LM, Ripley EM (2006) Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150°C. Geochim Cosmochim Acta 70:4889–4905CrossRefGoogle Scholar
  53. 53.
    Shink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280Google Scholar
  54. 54.
    Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC, Keller M (2006) Environmental whole genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72:3291–3301PubMedCrossRefGoogle Scholar
  55. 55.
    Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebars I, Sermon K (2006) Optimization and evaluation of single-cell whole genome multiple displacement amplification. Hum Mutat 27:496–503PubMedCrossRefGoogle Scholar
  56. 56.
    Bergen AW, Qi Y, Haque KA, Welch RA, Chanock SJ (2005) Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. BMC Biotechnol 5:24PubMedCrossRefGoogle Scholar
  57. 57.
    Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208CrossRefGoogle Scholar
  58. 58.
    Stackebrandt E, Schumann P, Schüler E, Hippe H (2003) Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmeni corrig., comb. nov. Int J Syst Evol Microbiol 53:1439–1443PubMedCrossRefGoogle Scholar
  59. 59.
    Jackson BE, McInerney MJ (2000) Thiosulfate Disproportionation by Desulfotomaculum thermobenzoicum. Appl Environ Microbiol 66:3650–3653PubMedCrossRefGoogle Scholar
  60. 60.
    Vatsurina A, Badrutdinova D, Schumann P, Spring S, Vainshtein M (2008) Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. Int J Syst Evol Microbiol 58:1228–1232PubMedCrossRefGoogle Scholar
  61. 61.
    Labrenz M, Banfeld JF (2004) Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217PubMedGoogle Scholar
  62. 62.
    Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:1337–1346CrossRefGoogle Scholar
  63. 63.
    Kovacik WP, Takai K, Mormile MR, McKinley JP, Brockman FJ, Fredrickson JK, Holben WE (2006) Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and S0-reducing bacteria in a sulfate-rich environment. Environ Microbiol 8:141–155PubMedCrossRefGoogle Scholar
  64. 64.
    Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191PubMedCrossRefGoogle Scholar
  65. 65.
    Vandieken V, Mussmann M, Niemann H, Jorgensen BB (2006) Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139PubMedCrossRefGoogle Scholar
  66. 66.
    Sievert SM, Heidorn T, Kuever J (2000) Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur oxidizinig bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol 50:1229–1237PubMedGoogle Scholar
  67. 67.
    Mergaert J, Verhelst A, Cnockaert MC, Tan TL, Swings J (2001) Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24:98–107PubMedCrossRefGoogle Scholar
  68. 68.
    Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiol Mol Biol Rev 150:171–180Google Scholar
  69. 69.
    Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53:129–139PubMedCrossRefGoogle Scholar
  70. 70.
    Shivaji S, Reddy GSN, Aduri RP, Kutty R, Ravenschlag K (2004) Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol 50:525–536PubMedGoogle Scholar
  71. 71.
    Mayilraj S, Krishnamurthi S, Saha P, Saini HS (2006) Rhodococcus kroppenstedtii sp nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 56:979–982PubMedCrossRefGoogle Scholar
  72. 72.
    Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619PubMedCrossRefGoogle Scholar
  73. 73.
    Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  74. 74.
    Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610PubMedCrossRefGoogle Scholar
  75. 75.
    Ziemke F, Höfle MG, Lalucat J, Roselló-Mora R (1998) Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186PubMedCrossRefGoogle Scholar
  76. 76.
    Vogel B, Venkateswaran K, Satomi M, Gram L (2005) Identification of Shewanella baltica as the most important H2S-producing species during iced storage of Danish marine fish. Appl Environ Microbiol 71:6689–6697CrossRefGoogle Scholar
  77. 77.
    Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Milleson M, Kieft TL, Trimarco E, Balkwill DL, Dollhopf ME (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430CrossRefGoogle Scholar
  78. 78.
    Behrendt U, Ulrich A, Schumann P (2001) Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51:1267–1276PubMedGoogle Scholar
  79. 79.
    Stolz A, Burger S, Kuhm A, Kampfer P, Busse HJ (2005) Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 55:1077–1081PubMedCrossRefGoogle Scholar
  80. 80.
    Popp N, Schlomann M, Mau M (2006) Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon contaminated soils. Microbiol Mol Biol Rev 152:3291–3304Google Scholar
  81. 81.
    Alekhina IA, Marie D, Petit JR, Lukin VV, Zubkov VM, Bulat SA (2007) Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice borehole at Vostok, East Antarctica. FEMS Microbiol Ecol 59:289–299PubMedCrossRefGoogle Scholar
  82. 82.
    Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156:68–75PubMedCrossRefGoogle Scholar
  83. 83.
    Belousova NI, Shkidchenko AN (2004) Low-temperature microbial degradation of oil products differing in the extent of condensation. Appl Biochem Microbiol 40:262–265CrossRefGoogle Scholar
  84. 84.
    Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092PubMedCrossRefGoogle Scholar
  85. 85.
    Kampfer P, Schulze R, Jackel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–344PubMedCrossRefGoogle Scholar
  86. 86.
    Lambo AJ, Patel TR (2007) Biodegradation of polychlorinated biphenyls in Aroclor 1232 and production of metabolites from 2, 4, 4′-trichlorobiphenyl at low temperature by psychrotolerant Hydrogenophaga sp strain IA3-A. J Appl Microbiol 102:1318–1329PubMedCrossRefGoogle Scholar
  87. 87.
    Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270PubMedCrossRefGoogle Scholar
  88. 88.
    Magot M, Fardeau M-L, Arnauld O, Lanau C, Ollivier B, Thomas P, Patel BK (1997) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155:185–191PubMedCrossRefGoogle Scholar
  89. 89.
    Dahle H, Garshol F, Madsen M, Birkeland N-K (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoek 93:37–49PubMedCrossRefGoogle Scholar
  90. 90.
    Balkwill D, Leach F, Wilson J, McNabb J, White D (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface sediments. Microb Ecol 16:73–84CrossRefGoogle Scholar
  91. 91.
    Pfiffner SM, Cantu JM, Smithgall A, Peacock A, White DC, Moser DP, Onstott TC, van Heerden E (2006) Phospholipid fatty acid profiles and biodensity estimates for water, rock and air samples recovered from Witwatersrand Basin mines. Geomicrobiol J 23:431–442CrossRefGoogle Scholar
  92. 92.
    Kaneda T (1991) Iso and anteiso fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedGoogle Scholar
  93. 93.
    Kohring LL, Ringelberg DB, Devereux R, Stahl M, Mittleman M, White DC (1994) Comparison of phylogenetic relationships based on phospholipids fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119:303–308PubMedCrossRefGoogle Scholar
  94. 94.
    Guckert JB, Hood MA, White DC (1986) Phospholipid, ester-linked fatty acid profile changes during nutrient depletion of Vibrio cholerae: increases in the trans/cis and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801PubMedGoogle Scholar
  95. 95.
    Sikkema J, Bont JAMD, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedGoogle Scholar
  96. 96.
    Collins MD, Jones D (1981) Distrubition of isoprenoid quinone structyral types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedGoogle Scholar
  97. 97.
    Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818PubMedCrossRefGoogle Scholar
  98. 98.
    Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status and metabolic activity of the microbial community in soil. In: Bollag J-M, Stotzky G, editors. Soil Biochemistry Vol. 7. New York: Marcel Dekker Inc., P. 229–262Google Scholar
  99. 99.
    Hiraishi A, Ueda Y, Ishihara J (1998) Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 64:992–995PubMedGoogle Scholar
  100. 100.
    Roy C, Lancaster D (2001) Structure and function of succinate:quinone oxidoreductases and the role of quinol:fumarate reductases in fumarate respiration. In: Zannoni D (ed) Respiration in Archaea and bacteria: diversity of prokaryotic electron transport carriers. Kluwer Academic, Dordrecht, pp 57–85Google Scholar
  101. 101.
    Schultz BE, Chan SI (1998) Thermodynamics of electron transfer in Escherichia coli cytochrome bo3. Proc Natl Acad Sci U S A 95:11643–11648PubMedCrossRefGoogle Scholar
  102. 102.
    Stotler RL, Frape SK, Ruskeeniemi T, Ahonen A, Onstott TC, Hobbs MY (2009b) The hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol (373:80–95)CrossRefGoogle Scholar
  103. 103.
    Stotler, RL (2008) “Evolution of Canadian Shield Groundwaters and Gases: Influence of Deep Permafrost”, PhD Dissertation, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada, 265pGoogle Scholar
  104. 104.
    Lippmann J, Stute M, Torgersen T, Moser DP, Hall J, Lin L, Borcsik M, Bellamy RES, Onstott TC (2003) Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67:4597–4619CrossRefGoogle Scholar
  105. 105.
    Dyke AS, Prest VK (1987) Late Wisconsian and Holocene history of the Laurentide ice sheet. Geogr Phys Quat 41:237–263Google Scholar
  106. 106.
    Frape SK, Blyth A, Blomqvist R, McNutt RH, Gascoyne M (2005) Deep fluids in the continents: II. Crystalline rocks. In: Drever JI (ed) Surface and ground water, weathering, and soils, vol. 5. Elsevier, Oxford, pp 542–580Google Scholar
  107. 107.
    Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482PubMedCrossRefGoogle Scholar
  108. 108.
    Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4646PubMedCrossRefGoogle Scholar
  109. 109.
    Mikucki JA, Priscu JC (2007) Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 73:4029–4039PubMedCrossRefGoogle Scholar
  110. 110.
    Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400PubMedCrossRefGoogle Scholar
  111. 111.
    Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374PubMedCrossRefGoogle Scholar
  112. 112.
    Sorokin D, Kuenen J, Jetten M (2001) Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol 175:94–101PubMedCrossRefGoogle Scholar
  113. 113.
    Gascoyne M, Thomas DA (1997) Impact of blasting on groundwater composition in a fracture in Canada's Underground Research Laboratory. J Geophys Res Solid Earth 102:573–584CrossRefGoogle Scholar
  114. 114.
    Stroes-Gascoyne S, Gascoyne M (1998) The introduction of microbial nutrients into a nuclear waste disposal vault during excavation and operation. Environ Sci Technol 32:317–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. C. Onstott
    • 1
    Email author
  • Daniel J. McGown
    • 1
  • Corien Bakermans
    • 2
  • Timo Ruskeeniemi
    • 3
  • Lasse Ahonen
    • 3
  • Jon Telling
    • 4
  • Bruno Soffientino
    • 5
  • Susan M. Pfiffner
    • 6
  • Barbara Sherwood-Lollar
    • 4
  • Shaun Frape
    • 7
  • Randy Stotler
    • 7
  • Elizabeth J. Johnson
    • 8
  • Tatiana A. Vishnivetskaya
    • 9
    • 11
  • Randi Rothmel
    • 10
  • Lisa M. Pratt
    • 8
  1. 1.Department of GeosciencesPrinceton UniversityPrincetonUSA
  2. 2.Center for Microbial EcologyMichigan State UniversityEast LansingUSA
  3. 3.Geological Survey of FinlandEspooFinland
  4. 4.Earth Sciences CentreUniversity of TorontoTorontoCanada
  5. 5.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  6. 6.Center for Environmental BiotechnologyThe University of TennesseeKnoxvilleUSA
  7. 7.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  8. 8.Department of Geological SciencesIndiana UniversityBloomingtonUSA
  9. 9.Department of Food ScienceNorth Carolina State UniversityRaleighUSA
  10. 10.Shaw Environmental Inc.LawrencevilleUSA
  11. 11.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations